转自:https://blog.csdn.net/mingover/article/details/71108852
千万数据的分库分表(一)
2017年05月03日 11:41:36
单表数据量达到1000W以后,就要拆了.
背景情况
用户表达到了 几千万级别,在做很多操作都比较吃力,.所以,考虑对其进行分表.
常用的切分方案
数据的切分(Sharding)根据其切分规则的类型,可以分为两种切分模式。一种是按照不同的表(或者Schema)来切分到不同的数据库(主机)之上,这种切可以称之为数据的垂直(纵向)切分;另外一种则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面,这种切分称之为数据的水平(横向)切分。
垂直切分
即业务切分
下面来分析下垂直切分的优缺点:
优点:
拆分后业务清晰,拆分规则明确。
系统之间整合或扩展容易。
数据维护简单。
缺点:
部分业务表无法 join,只能通过接口方式解决,提高了系统复杂度。
受每种业务不同的限制存在单库性能瓶颈,不易数据扩展跟性能提高。
事务处理复杂。
由于垂直切分是按照业务的分类将表分散到不同的库,所以有些业务表会过于庞大,存在单库读写与存储瓶
颈,所以就需要水平拆分来做解决。
水平切分
相对于垂直拆分,水平拆分不是将表做分类,而是按照某个字段的某种规则来分散到多个库之中,每个表中
包含一部分数据。简单来说,我们可以将数据的水平切分理解为是按照数据行的切分,就是将表中的某些行切分到一个数据库,而另外的某些行又切分到其他的数据库中
几种典型的分片规则包括:
按照用户 ID 求模,将数据分散到不同的数据库,具有相同数据用户的数据都被分散到一个库中。
按照日期,将不同月甚至日的数据分散到不同的库中。
按照某个特定的字段求摸,或者根据特定范围段分散到不同的库中。
如图,切分原则都是根据业务找到适合的切分规则分散到不同的库,下面用用户 ID 求模举例:
优点:
拆分规则抽象好,join 操作基本可以数据库做。
不存在单库大数据,高并发的性能瓶颈。
应用端改造较少。
提高了系统的稳定性跟负载能力。
缺点:
拆分规则难以抽象。
分片事务一致性难以解决。
数据多次扩展难度跟维护量极大。
跨库 join 性能较差。
切分共同的问题
前面讲了垂直切分跟水平切分的不同跟优缺点,会发现每种切分方式都有缺点,但共同的特点缺点有:
引入分布式事务的问题。
跨节点 Join 的问题。
跨节点合并排序分页问题。
多数据源管理问题。
一般来讲业务存在着复杂 join 的场景是难以切分的,往往业务独立的易于切分。如何切分,切分到何种程度是考验技术架构的一个难题。
切分的一些原则
由于数据切分后数据 Join 的难度在此也分享一下数据切分的经验:
第一原则:能不切分尽量不要切分。
第二原则:如果要切分一定要选择合适的切分规则,提前规划好。
第三原则:数据切分尽量通过数据冗余或表分组(Table Group)来降低跨库 Join 的可能。
第四原则:由于数据库中间件对数据 Join 实现的优劣难以把握,而且实现高性能难度极大,业务读取尽量
少使用多表 Join。
数据库的切分引申的 数据源管理思考
主要有两种思路:
A. 客户端模式,在每个应用程序模块中配置管理自己需要的一个(或者多个)数据源,直接访问各个数据
库,在模块内完成数据的整合;
B. 通过中间代理层来统一管理所有的数据源,后端数据库集群对前端应用程序透明;
可能 90%以上的人在面对上面这两种解决思路的时候都会倾向于选择第二种,尤其是系统不断变得庞大复杂
的时候。确实,这是一个非常正确的选择,虽然短期内需要付出的成本可能会相对更大一些,但是对整个系统的扩展性来说,是非常有帮助的。
中间件
为了减少业务人员的压力,
常用一些中间件,如 mycat Cobar
其结构大约如下图
中间件的直接感受
这里 简单试用了下,mycat ,使用的例子是其官方例子
过程:
mysql 新建三个库db1,db2,db3
在linux服务器上 安装mycat. 配置好mycat对三个库,表的对应,mycat的rules 等.
后续使用时,将mycat 当作mysql来使用即可,
insert 三条数据进 mycat 的 TESTDB 的 travelrecord 表,
结果如下:
三条数据的实际存储位置在db1,db2,db3中
参考资料
https://github.com/MyCATApache/Mycat-Server/wiki/3.0-Mycat%E9%85%8D%E7%BD%AE%E5%85%A5%E9%97%A8
http://www.cnblogs.com/ivictor/p/5111495.html
http://www.mycat.org.cn/