超现实数学习笔记

Surreal Number 是解决一类非平等博弈问题的利器,它通常被用来描述一个游戏状态。
这里我们略过 Surreal Number 的定义,直接考虑用实数表示 Surreal Number 来讨论它在博弈上的运用。
我们将游戏的两个玩家称作左人和右人,在它们的优劣势对于 Surreal Number 的贡献上,左人为正,右人为负。因此,如果一个状态的 Surreal Number 是正数,则左人必胜;为负数,则右人必胜;为 0 0 0 则后手必胜。先手必胜的状态稍后再说。
首先,有一棵 Surreal Number 树,根是 0 0 0,每次最左和最右是 ± 1 \pm1 ±1,中间的分支为和它最接近的两个的平均数,如下图
Surreal Number Tree
假设一个状态被左人操作过后得到的状态的 Surreal Number 集合为 T L {TL} TL,被右人操作过后得到的集合为 T R TR TR。那么当前状态的 Surreal Number 为 { T L ∣ T R } \{TL|TR\} {TLTR} 也就是 { T L m a x ∣ T R m i n } \{TL_{max}|TR_{min}\} {TLmaxTRmin},它的值就等于树上位于 T L m a x TL_{max} TLmax T R m i n TR_{min} TRmin 之间的深度最浅的数。初始状态也就是没有后继的状态的 Surreal Number 就是 0 0 0。由 Surreal Number 的定义我们容易发现, T L m a x TL_{max} TLmax 是必须小于 T R m i n TR_{min} TRmin。所以当不满足这个条件的状态出现时,这种博弈问题就无法利用 Surreal Number 解决。我们也容易发现只要 T L m a x TL_{max} TLmax 为负, T R m i n TR_{min} TRmin 为正那么这个状态的 Surreal Number 为 0 0 0,就是后手必胜,同时如果 T L m a x TL_{max} TLmax T R m i n TR_{min} TRmin 都为 0 0 0,那么就是先手必胜了,这种状态我们记为 ∗ * ,关于 ∗ * ↑ , ↓ \uparrow,\downarrow , 的咱不讨论。因为不会
对于多个非平等博弈游戏,我们直接将他们的 Surreal Number 相加就是整个游戏的 Surreal Number 了。

【2019 Multi-University Training Contest Stage 2】Problem G Game

对于 3 × 3 3\times 3 3×3 的棋盘搜出它的 Surreal Number 即可

【清华集训2017】福若格斯

咕咕咕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值