神经网络与深度学习
文章平均质量分 87
dangyang123
这个作者很懒,什么都没留下…
展开
-
第一章 神经网络
神经网络受到人脑神经系统的启发,早期的神经科学家构造了一种模仿人脑神经系统的数学模型,称为人工神经网络,简称神经网络。???? 在机器学习领域,神经网络是指由很多人工神经元构成的网络结构模型,这些人工神经元之间的连接强度是可学习的参数。1.人脑神经网络人类大脑是人体最复杂的器官,由神经元、神经胶质细胞、神经干细胞和血管组成。其中,神经元(Neuron),也叫神经细胞(Nerve Cell),是携带和传输信息的细胞,是人脑神经系统中最基本的单元。每个神经元有上千个突触和其他神经元相连接。这些神经元原创 2021-04-04 21:20:19 · 2573 阅读 · 0 评论 -
第一章 深度学习
深度学习为了学习一种好的表示,需要构建具有一定“深度” 的模型,并通过学习算法来让模型自动学习出好的特征表示(从底层特征,到中层特征,再到高层特征),从而最终提升预测模型的准确率。“深度”是指原始数据进行非线性特征转换的次数。如果把一个表示学习系统看作一个有向图结构,深度也可以看作从输入节点到输出节点所经过的最长路径的长度。深度学习(Deep Learning , DL)就是从数据中学习一个“深度模型”所需要的一种学习方法。深度学习是机器学习的一个子问题,其主要目的是从数据中自动学习到有效原创 2021-04-04 11:43:40 · 785 阅读 · 0 评论 -
第一章 表示学习
表示学习????为了提高机器学习系统的准确率,需要将输入信息转换为有效的特征,或者更一般地称为表示(Representation)。如果有一种算法可以自动地学习出有效的特征,并提高最终机器学习模型的性能,那么这种学习就可以叫做表示学习(Representation Learning)。【特征学习(Feature Learning),又叫表示学习(Representation Learning)或者表征学习。】语义鸿沟问题是指输入数据的底层特征和高层语义信息之间的不一致性和差异性。【表示学习的关键原创 2021-04-04 10:10:50 · 487 阅读 · 0 评论 -
第一章 机器学习
机器学习机器学习(Machine Learning, ML)是指从有限的观测数据中学习(或“猜测”)出具有一般性的规律,并利用这些规律对未知数据进行预测的方法。传统的机器学习主要关注如何学习一个预测模型。一般需要首先将数据表示为一组特征(Feature),特征的表示形式可以是连续的数值、离散的符号或其他形式。然后将这些特征输入预测模型,并输出预测结果。【这类机器学习可以看作浅层学习(Shallow Learning),浅层学习的一个重要特点是不涉及特征学习,其特征主要靠人工经验或特征转换方法来抽取。原创 2021-04-03 18:22:10 · 306 阅读 · 0 评论 -
第一章绪论
第一章绪论2人工智能***智能(Intelligence)***可以理解为“智力”和“能力”。前者是智能的基础,后者是获取知识和运用知识求解的能力。人工智能(Artificial Intelligence,AI)就是让机器具有人类的智能。一般认为智能(或特指人类智能)是知识和智力**的总和,都和大脑的思维活动有关。图灵测试:“一个人在不接触对方的情况下,通过一种特殊的方式和对方进行一系列的回答。如果在相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么就可以认为这个计算机是智能的。”人原创 2020-12-24 10:29:28 · 485 阅读 · 0 评论 -
第一章 绪论
第一章 绪论1最近学习邱锡鹏老师的《神经网络与深度学习》,随书做点笔记,同时也为了督促自己????神经网络深度学习(Deep learning)是机器学习的一个分支,是指一类问题以及解决这类问题的方法。深度学习{机器学习问题:指从有限样例中通过算法总结出一般性的规律,并可以应用到新的未知数据上。模型一般比较复杂:指样本的原始输入到输出目标之间的数据流经过多个线性或非线性的组件\text{深度学习}\begin{cases} \text{机器学习问题:指从有限样例中通过算法总结出一般性的规律,并可原创 2020-12-19 16:41:20 · 200 阅读 · 1 评论