思路:
1.初始化两个栈:运算符栈s1和存储中间结果的栈s2;
2.从左至右扫描中缀表达式;
3.扫描到操作数直接压入栈s2中;
4.扫描到运算符时,比较其与s1栈顶运算符的优先级:
4.1若s1为空或者栈顶运算符为左括号,则直接将扫描到的运算符压入s1;
4.2否则,若扫描到的运算符优先级比s1栈顶运算符高,也将其压入栈s1;
4.3否则,将s1栈顶运算符弹出并压入到栈s2中,同时再次与s1中新的栈顶运算符比较;
5.扫描到括号时:
5.1若扫描到的是左括号,则直接压入到栈s1中;
5.2若扫描到的是右括号,则依次弹出s1栈顶运算符,并压入栈s2,直至遇到左括号为 止,最后将栈s1中的左括号丢弃;
6.重复步骤2-5,直到扫描到中缀表达式的最右边;
7.将s1中剩余的运算符依次弹出并压入栈s2;
8.依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式。
注:因为栈s2在转换的过程中只入栈不出栈,且最后出栈的逆序为中缀表达式对应的后缀表达式,故下面代码中用ArrayList s2代替Stack s2。
先来看看执行结果:
具体代码如下:
package DataStructures.stack;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//将中缀表达式转成后缀表达式
//1.先将中缀表达式放入List中,方便遍历
//2.将得到的中缀表达式List转为后缀表达式对应的List
String expression = "1+((2+3)*4)-15";
List<String> infixExpressionList = toInfixExpressionList(expression);
System.out.println("中缀表达式对应的List为:"+infixExpressionList);
List<String> parseSuffixExpressionList = parseSuffixExpressionList(infixExpressionList);
System.out.println("后缀表达式对应的List为:"+parseSuffixExpressionList);
System.out.println("1+((2+3)*4)-15="+cal(parseSuffixExpressionList));
//先定义逆波兰表达式
//(3+4)*5-6 => 34+5*6-
//为了方便,逆波兰表达的数字和符号使用空格隔开
// String suffixExpression = "30 4 + 5 * 6 -";
//
// List<String> list = getListString(suffixExpression);
// System.out.println("(3+4)*5-6 的逆波兰表达式为:"+list);
//
// System.out.println("(3+4)*5-6="+cal(list));
}
//将中缀表达式转成对应的List
public static List<String> toInfixExpressionList(String s){
//定义一个List用于存放中缀表达式
List<String> ls = new ArrayList<String>();
//定义一个指针用于遍历中缀表达式字符串
int index = 0;
//定义一个字符串,用于对表达式中多位数的拼接
String str;
//每遍历一个字符串就放入c中
char c;
do{
//若c不是数字,直接加入到ls中
if( (c = s.charAt(index)) < 48 || (c = s.charAt(index)) > 57){
ls.add(""+c); // ""+c可以将字符串c转为字符串
index++;
} else { //若c是数字,则需要考虑多位数问题
str = ""; //每次赋值前将str清空
while( index < s.length() && (c = s.charAt(index)) >= 48 && (c = s.charAt(index)) <= 57 ){
str += c;
index++;
}
ls.add(str);
}
}while (index < s.length());
return ls;
}
//将得到的中缀表达式List转为后缀表达式对应的List
public static List<String> parseSuffixExpressionList(List<String> ls){
//定义两个栈
Stack<String> s1 = new Stack<String>();//符号栈
/*
因为s2在转换过程中没有出栈操作,且最后还需要逆序输出;
故用List替换Stack
*/
List<String> s2 = new ArrayList<String>(); //存储中间结果
//遍历ls
for(String item: ls){
//若item为数,则直接加入s2
if( item.matches("\\d+")){
s2.add(item);
} else if(item.equals("(")){
s1.push(item);
} else if(item.equals(")")){
//若item为右括号,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号,此时将这一对括号丢弃
while (!s1.peek().equals("(")){
s2.add(s1.pop());
}
s1.pop();//将左括号弹出
} else {
//当item的优先级小于s1栈顶的运算符,将s1栈顶运算符弹出并压入s2中,再与s1中新的栈顶运算符进行比较
while ( s1.size() != 0 && Operation.getValue(item) <= Operation.getValue(s1.peek()) ){
s2.add(s1.pop());
}
//将item压入栈s1
s1.push(item);
}
}
//将s1中剩余的运算符依次弹出并压入s2
while( s1.size() != 0 ){
s2.add(s1.pop());
}
return s2;
}
//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
public static List<String> getListString(String suffixExpression){
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<String>();
for(String s: split){
list.add(s);
}
return list;
}
public static int cal(List<String> ls){
Stack<String> stack = new Stack<>();
//遍历ls
for(String s: ls){
if(s.matches("\\d+")){
stack.push(s);
} else {
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if(s.equals("+")){
res = num1 + num2;
} else if(s.equals("-")){
res = num1 - num2;
} else if(s.equals("*")){
res = num1 * num2;
} else if(s.equals("/")){
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误!");
}
stack.push(res+"");
}
}
return Integer.parseInt(stack.pop());
}
}
//编写一个类,返回对应的优先级数字
class Operation {
private static int ADD = 1;
private static int SUB = 1;
private static int MUL = 1;
private static int DIV = 1;
//写一个方法,返回对应的优先级数字
public static int getValue(String operation){
int result = 0;
switch (operation){
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
default:
System.out.println("不存在该运算符!");
break;
}
return result;
}
}