标度差值图像

标度差值图像在图像处理中用于两张图像相减,通常涉及8比特像素值。方法一通过简单运算可能产生截尾误差;方法二提供更高精确度并确保值在0-255范围内。在实际操作中,应先用高斯滤波处理图像,再相减得到DoG图像,然后使用合适的方法进行标定。在MATLAB中,确保将图像转换为double类型以避免数值截断错误。
摘要由CSDN通过智能技术生成

标度差值图像主要应用在两张图像相减的时候,在实践中,大多数图像都是有8码显示,因此像素值在0到255之间,因此在差值图像中,像素值的取值为-255到255之间,因此在显示这一结果时需要对图像作标度。

 

方法一:

对每一个像素值再加上255,然后除以2。该方法无法保证像素的取值可以覆盖0到255的全部8比特范围,但是所有的像素一定在这一范围。另外,在除以2过程中固有的截尾误差通常将导致精确度的损失。虽然有很多的不足,但是该非常的简单方便。

 

方法二:

该方法弥补的方法一的缺点,它可以得到更高的精确度并使像素取值覆盖整个8比特的范围。我们首先提取最小值,并把它的负值加到所有的差值图像的像素中(如果最小值是-a(a>0),则加上a;如果最小值是a,则减去a;通过该操作后,差值图像中最小的值就为0了)。之后,每一个像素乘以255/Max,其中Max为上一步操作之后图像的中最大像素值,这样就将所有的像素标定到0到255的范围内。


function result = scaleImg2(source)
% scale the image(let the value between 0 and 255)
% source - the image should be scaled with double data type
%
    minVal = min(source(:));
    source = source - minVal;
    maxVal = max(sourc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值