遗忘是可怕的东西……好记性不如烂笔头讲真……
命题
现在假设我不知道什么是莫比乌斯函数,只知道
F(x)=∑d∣xf(d)
若已知F(x),求f(x)的表达式。
性质
从已知的关系,可以得到性质:
1. 若y|x(y<x),则F(y)包含的所有f(d)都被F(x)包含了,F(y)不能包含f(x)
2. 包含f(x)的最小项是F(x)
构造
记x的第
f(x)=F(x)+∑1≤i≤kaiF(yi)=F(x)+∑1≤i≤kbif(yi)
可知所有的
bi=−1
.现在即要求解
ai
.
从yk,即x的最大真约数开始解,只有
再看yk−1,如果f(yk−1)前的系数已经被贡献了-1,则ak=0,看下一个约数;否则要令当前的贡献值+ak−1=−1,由此确定ak−1
举例
举个例子: