莫比乌斯函数的证明

这篇博客详细探讨了莫比乌斯函数的概念,从命题到性质,再到构造过程和不同类型的证明,包括朴素证明和构造性证明。通过举例和深入的数学分析,解释了如何确定莫比乌斯函数的系数,以及它与约数和的关系。最终,博主通过严谨的数学推导证明了莫比乌斯函数的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遗忘是可怕的东西……好记性不如烂笔头讲真……

命题

现在假设我不知道什么是莫比乌斯函数,只知道

F(x)=dxf(d)
若已知F(x),求f(x)的表达式

性质

从已知的关系,可以得到性质:
1. 若y|x(y<x),则F(y)包含的所有f(d)都被F(x)包含了,F(y)不能包含f(x)
2. 包含f(x)的最小项是F(x)

构造

x的第 i 小的约数是yi(yi<x),共有k个约数,则

f(x)=F(x)1ikf(yi)
由于左边的 f(x) 是一次的,所以右边是 F(yi) 的线性组合,设 ai 作为 F(yi) 的系数,即

f(x)=F(x)+1ikaiF(yi)=F(x)+1ikbif(yi)
可知所有的 bi=1 .现在即要求解 ai .

yk,即x的最大真约数开始解,只有 F(yk) 包含了f(yk),可得ak=1。同时对所有f(yk)前的系数都贡献-1。
再看yk1,如果f(yk1)前的系数已经被贡献了-1,则ak=0,看下一个约数;否则要令+ak1=1,由此确定ak1

举例

举个例子:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值