遗忘是可怕的东西……好记性不如烂笔头讲真……
命题
现在假设我不知道什么是莫比乌斯函数,只知道
性质
从已知的关系,可以得到性质:
1. 若
y|x(y<x)
,则
F(y)
包含的所有
f(d)
都被
F(x)
包含了,
F(y)
不能包含
f(x)
2. 包含
f(x)
的最小项是
F(x)
构造
记
x
的第
从
yk
,即
x
的最大真约数开始解,只有
再看
yk−1
,如果
f(yk−1)
前的系数已经被贡献了-1,则
ak=0
,看下一个约数;否则要令
当前的贡献值+ak−1=−1
,由此确定
ak−1
举例
举个例子:
x=180,{yi}={1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90}
先确定90的系数
a17
为-1,前面是90的约数的系数添上-1;
再看60的列和为0,故
a16
为-1,前面是6的约数的系数添上-1;
再看45的列和为-1,故
a15
为0;
……
直到所有系数都确定如下表:使得每列之和都为-1,即
f(yi)
前的系数都为-1
yi | 1 | 2 | 3 | 4 | 5 | 6 | 9 | 10 | 12 | 15 | 18 | 20 | 30 | 36 | 45 | 60 | 90 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a17 | -1 | -1 | -1 | 0 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | 0 | -1 | 0 | -1 |
a16 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | 0 | -1 | 0 |
a15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a14 | -1 | -1 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | 0 | -1 | 0 | 0 | -1 | 0 | 0 | 0 |
a13 | +1 | +1 | +1 | 0 | +1 | +1 | 0 | +1 | 0 | +1 | 0 | 0 | +1 | 0 | 0 | 0 | 0 |
a12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a11 | +1 | +1 | +1 | 0 | 0 | +1 | +1 | 0 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 |
a10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a9 | +1 | +1 | +1 | +1 | 0 | +1 | 0 | 0 | +1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a6 | -1 | -1 | -1 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
朴素证明
逐步求解的过程比较长,有没有什么关于 ai 的性质呢?
假设已经现在正在求
ai
,其列和由已经确定的
aj(j>i)
决定,且只有当
yi|yj
时,才会对
f(yi)
做非零标记。
设
p
为素数,若
若
xyi=p1p2
,则有
xyj=p1或p2的yj
已经先行对
f(yi)
做了两次-1标记,则确定
ai=+1
;
若
xyi=p1p2...ps
,则已有标记为
若 xyi=pv11pv22...pvss且至少有一个v大于1 ,则已有标记为
由此可以确定
把 F(x) 前的系数1也统一起来,定义莫比乌斯函数
构造性证明
如果已经构造好了莫比乌斯函数,证明只会更简单(T.T)
已知 F(x)=∑d∣xf(d) ,求证 f(x)=∑d∣xμ(d)F(xd)
证明: ∑d∣xμ(d)F(xd)=(1)∑d∣x[μ(d)∑k∣xdf(k)]=(2)∑k∣x[f(k)∑d∣xkμ(d)]=(3)f(x)
(1).
xd
作为整体,代入定义式
(2). 两边都为
∑kd∣xf(k)μ(d)
,左边提了
μ(d)
为公因子,右边提了
f(k)
为公因子,继续求和
(3). 令
x=pv11pv22...pvss
,给定k,则d为
xk
的约数。
当
xk≠1
,则d的取值为
pa11pa22...pass(ai≤vi,ai不同时为0)
,若有任何的
ai>1
则
μ(d)=0
,故只需考虑
ai为0或1
。
ai组成的解向量(a1,a2,...,as)中有(...,0,...),(...,1,...)
若省略的部分相同,这两者总是成对出现的,使得
∑ai
的奇偶性恰好相反,即有
μ(d1)=1
,就有
μ(d2)=−1
,两者和为0。得到当
xk≠1,∑d∣xkμ(d)=0
.
只有当
xk=1,∑d∣xkμ(d)=1
.
鸡冻ing…终于写完了….