打造个人知识库,wsl+ollama部署deepseek与vscode集成

目前大模型应用如火如荼,各大LLM如Deepseek也都提供了在线的助手服务,结合mcp-server还可以进一步拓展到本地的工具能力。

但对于一些和本地业务和数据强相关的资料,在线的大模型训练数据集一般并不能涵盖,特别还有一些敏感或对安全要求很高的数据,使用在线大模型并不现实。所以我们个人应用和实际工作中,本地部署大模型并加入本地知识库也是一个刚性需求。

本文就记录下在WSL中通过OllamaCherryStudio搭建本地大模型,并将本地模型集成到VsCode的AI助手的过程分享。

Ollama简介

Ollama 是一个基于Go 语言开发的简单易用的本地大语言模型运行框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。Ollama 是 Omni-Layer Learning Language Acquisition Model(全方位学习语言接受模型) 的简写。

Deepseek本地模型及运行配置

Deepseek目前根据本地部署包含的参数集大小,又包含 1.5B671B 等多个版本,参数集越大则AI越智能,但相应地对硬件要求则越高。

一般对应不同deepseek模型版本,推荐的硬件配置如下:

<
模型型号 CPU 内存 硬盘 显存 适用场景
DeepSeek-R1-1.5B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城下秋草

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值