LeetCode:93.复原IP地址
1.思路
使用逗点分割字符,对每段字符进行范围,内容的有效性进行检验,当逗点数量为3时,字符被分割成四段,以此作为终止条件。for循环横向遍历,backTracking()回溯遍历。其中字符串区间选择是难点。
2.代码实现
1class Solution {
2 List<String> result = new ArrayList<>(); // 存储字符数组的结果集
3
4 public List<String> restoreIpAddresses(String s) {
5 StringBuilder sb = new StringBuilder(s); // 临时字符串
6 backTracking(sb, 0, 0); // 回溯函数
7 return result; // 完成遍历,返回结果集
8 }
9
10 private void backTracking(StringBuilder s, int startIndex, int dotCount) {
11 if (dotCount == 3) { // 逗点数量== 3 时,终止条件
12 if (isValid(s, startIndex, s.length() - 1)) { // 判断是否有效,有效加入结果集,否则进行剪枝操作
13 result.add(s.toString());
14 }
15 return;
16 }
17
18 // 横向遍历
19 for (int i = startIndex; i < s.length(); i++) {
20 if (isValid(s, startIndex, i)) { // 判断遍历的一段段字符是否有效
21 s.insert(i + 1, '.'); // 有效则加入逗点
22 backTracking(s, i + 2, dotCount + 1); // 调用回溯函数寻找下一段符合条件的字符串
23 s.deleteCharAt(i + 1); // 回溯,删除的是逗点
24 } else {
25 break; // 无效则进行剪枝操作
26 }
27 }
28 }
29
30 // 构建字符有效性的函数
31 private boolean isValid(StringBuilder s, int start, int end) {
32 if (start > end) { // 字符子串为空,则无效,返回false
33 return false;
34 }
35 if (s.charAt(start) == '0' && start != end) { // 含有多个字符且首个字符为0,则无效,返回false
36 return false;
37 }
38
39 int num = 0;
40 for (int i = start; i <= end; i++) {
41 int digit = s.charAt(i) - '0'; // 将字符转换为数字
42 num = num * 10 + digit; // 将数字组合起来
43 if (num > 255) { // 数字大于255,则无效,返回false
44 return false;
45 }
46 }
47 return true; // 字符子串有效,返回true
48 }
49}
3.复杂度分析
时间复杂度:每一段数字最大为3,每次最多递归四次,O(S*3^4).
空间复杂度:临时字符串sb对空间开销 + 递归函数使用栈的开销
LeetCode:78.子集
1.思路
子集问题,直接横向遍历嵌套递归遍历,将所有结果加入结果集即可
2.代码实现
1class Solution {
2 List<List<Integer>> result = new ArrayList<>(); // 存放结果的结果集
3 LinkedList<Integer> path = new LinkedList<>(); // 存放单个结果
4 public List<List<Integer>> subsets(int[] nums) {
5
6 backtracking(nums, 0); // 递归
7 return result; // 返回结果集
8 }
9 private void backtracking(int[] nums, int startIndex) {
10 result.add(new ArrayList<>(path)); // 加入结果集
11 if (startIndex >= nums.length) { // 当遍历到最后阶段时的终止条件
12 return;
13 }
14 // 横向遍历
15 for (int i = startIndex; i < nums.length; i++) {
16 path.add(nums[i]); // 加入到结果集
17 backtracking(nums, i + 1); // 递归加入元素
18 path.removeLast(); // 回溯 删除元素
19 }
20 }
21}
3.复杂度分析
时间复杂度:一次遍历经历一个for循环和一个递归,一个元素要经历n次遍历,则为2^n.而n个元素需要n*2^n.
空间复杂度:取决于栈空间和堆空间的开销,O(n + m)
LeetCode:90.子集II
1.思路
将数组抽象成树形结构,先排序,定义一个used数组进行标记数层去重,for循环横向遍历,backtracking()递归遍历,当位置超过数组长度就是终止条件.
2.代码实现
1class Solution {
2 List<List<Integer>> result = new ArrayList<>(); // 存放符合条件结果的结果集
3 LinkedList<Integer> path = new LinkedList<>(); // 符合条件的结果
4 boolean[] used; // 记录是否被使用的数组,需要和排序结合使用
5 public List<List<Integer>> subsetsWithDup(int[] nums) {
6 if (nums.length == 0) { // 当数组元素为空时,直接返回即可
7 result.add(path);
8 return result;
9 }
10 Arrays.sort(nums); // 数组进行排序
11 used = new boolean[nums.length]; // 初始化used[]
12 subsetsWithDupHelper(nums, 0); // 调用回溯函数
13 return result; // 返回结果集
14 }
15 // 构建回溯函数
16 private void subsetsWithDupHelper(int[] nums, int startIndex) {
17 result.add(new ArrayList<>(path)); // 将符合条件的结果path加入到结果集中
18 if (startIndex >= nums.length) { // 终止条件
19 return;
20 }
21 // 横向遍历
22 for (int i = startIndex; i < nums.length; i++) {
23 // 数层去重
24 if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
25 continue;
26 }
27 path.add(nums[i]); // 符合条件的加入结果path中
28 used[i] = true; // 将该标记值改为true
29 subsetsWithDupHelper(nums, i + 1); // 递归调用
30 path.removeLast(); // 回溯
31 used[i] = false; // 置为false
32 }
33 }
34}
3.复杂度分析
时间复杂度:O(n!)
空间复杂度:O(n^2)