算法训练Day28|● 93.复原IP地址 ● 78.子集 ● 90.子集II

文章介绍了在LeetCode上关于复原IP地址(93题)和子集(78题及90题)的问题,主要涉及使用回溯算法来解决。对于复原IP地址,通过检查每段字符的有效性并插入逗号来构建可能的IP地址。对于子集问题,分别展示了无重复子集和有重复元素子集的生成方法,同样采用回溯策略,同时考虑了去重策略。文章还分析了这两个问题的时间和空间复杂度。
摘要由CSDN通过智能技术生成
LeetCode:93.复原IP地址

93. 复原 IP 地址 - 力扣(LeetCode)

1.思路

使用逗点分割字符,对每段字符进行范围,内容的有效性进行检验,当逗点数量为3时,字符被分割成四段,以此作为终止条件。for循环横向遍历,backTracking()回溯遍历。其中字符串区间选择是难点。

2.代码实现
 1class Solution {
 2    List<String> result = new ArrayList<>(); // 存储字符数组的结果集
 3
 4    public List<String> restoreIpAddresses(String s) {
 5        StringBuilder sb = new StringBuilder(s); // 临时字符串
 6        backTracking(sb, 0, 0); // 回溯函数
 7        return result; // 完成遍历,返回结果集
 8    }
 9
10    private void backTracking(StringBuilder s, int startIndex, int dotCount) {
11        if (dotCount == 3) { // 逗点数量== 3 时,终止条件
12            if (isValid(s, startIndex, s.length() - 1)) { // 判断是否有效,有效加入结果集,否则进行剪枝操作
13                result.add(s.toString());
14            }
15            return;
16        }
17
18        // 横向遍历
19        for (int i = startIndex; i < s.length(); i++) {
20            if (isValid(s, startIndex, i)) { // 判断遍历的一段段字符是否有效
21                s.insert(i + 1, '.'); // 有效则加入逗点
22                backTracking(s, i + 2, dotCount + 1); // 调用回溯函数寻找下一段符合条件的字符串
23                s.deleteCharAt(i + 1); // 回溯,删除的是逗点
24            } else {
25                break; // 无效则进行剪枝操作
26            }
27        }
28    }
29
30    // 构建字符有效性的函数
31    private boolean isValid(StringBuilder s, int start, int end) {
32        if (start > end) { // 字符子串为空,则无效,返回false
33            return false;
34        }
35        if (s.charAt(start) == '0' && start != end) { // 含有多个字符且首个字符为0,则无效,返回false
36            return false;
37        }
38
39        int num = 0;
40        for (int i = start; i <= end; i++) {
41            int digit = s.charAt(i) - '0'; // 将字符转换为数字
42            num = num * 10 + digit; // 将数字组合起来
43            if (num > 255) { // 数字大于255,则无效,返回false
44                return false;
45            }
46        }
47        return true; // 字符子串有效,返回true
48    }
49}
3.复杂度分析

时间复杂度:每一段数字最大为3,每次最多递归四次,O(S*3^4).
空间复杂度:临时字符串sb对空间开销 + 递归函数使用栈的开销

LeetCode:78.子集

78. 子集 - 力扣(LeetCode)

1.思路

子集问题,直接横向遍历嵌套递归遍历,将所有结果加入结果集即可

2.代码实现
 1class Solution {
 2    List<List<Integer>> result = new ArrayList<>(); // 存放结果的结果集
 3    LinkedList<Integer> path = new LinkedList<>(); // 存放单个结果
 4    public List<List<Integer>> subsets(int[] nums) {
 5
 6        backtracking(nums, 0); // 递归
 7        return result; // 返回结果集
 8    }
 9    private void backtracking(int[] nums, int startIndex) {
10        result.add(new ArrayList<>(path)); // 加入结果集
11        if (startIndex >= nums.length) { // 当遍历到最后阶段时的终止条件
12            return;
13        }
14        // 横向遍历
15        for (int i = startIndex; i < nums.length; i++) {
16            path.add(nums[i]); // 加入到结果集
17            backtracking(nums, i + 1); // 递归加入元素
18            path.removeLast(); // 回溯 删除元素
19        }
20    }
21}
3.复杂度分析

时间复杂度:一次遍历经历一个for循环和一个递归,一个元素要经历n次遍历,则为2^n.而n个元素需要n*2^n.
空间复杂度:取决于栈空间和堆空间的开销,O(n + m)

LeetCode:90.子集II

90. 子集 II - 力扣(LeetCode)

1.思路

将数组抽象成树形结构,先排序,定义一个used数组进行标记数层去重,for循环横向遍历,backtracking()递归遍历,当位置超过数组长度就是终止条件.

2.代码实现
 1class Solution {
 2    List<List<Integer>> result = new ArrayList<>(); // 存放符合条件结果的结果集
 3    LinkedList<Integer> path = new LinkedList<>(); // 符合条件的结果
 4    boolean[] used; // 记录是否被使用的数组,需要和排序结合使用
 5    public List<List<Integer>> subsetsWithDup(int[] nums) {
 6        if (nums.length == 0) { // 当数组元素为空时,直接返回即可
 7            result.add(path);
 8            return result;
 9        } 
10        Arrays.sort(nums); // 数组进行排序
11        used = new boolean[nums.length]; // 初始化used[]
12        subsetsWithDupHelper(nums, 0); // 调用回溯函数
13        return result; // 返回结果集
14    }
15    // 构建回溯函数
16    private void subsetsWithDupHelper(int[] nums, int startIndex) {
17        result.add(new ArrayList<>(path)); // 将符合条件的结果path加入到结果集中
18        if (startIndex >= nums.length) { // 终止条件
19            return;
20        }
21        // 横向遍历
22        for (int i = startIndex; i < nums.length; i++) {
23            // 数层去重
24            if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
25                continue;
26            }
27            path.add(nums[i]); // 符合条件的加入结果path中
28            used[i] = true; // 将该标记值改为true
29            subsetsWithDupHelper(nums, i + 1); // 递归调用
30            path.removeLast(); // 回溯
31            used[i] = false; // 置为false
32        }
33    }
34}
3.复杂度分析

时间复杂度:O(n!)
空间复杂度:O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值