原题
Count the number of prime numbers less than a non-negative number, n.
Example:
Input: 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.
解法1
先构造primes列表, 假设从0, 1, …, n-1都是质数, 我们设置prime[0]和primes[1]为False. 由于2是最小的质数, 那么从2开始的 i, i 的 j倍一定不是质数(2 <= j <= (n-1)/i ).
这里i的取值范围是这样确定的: 假设n-1为合数, 那么一定存在n-1 = i*j, 那么i <= (n-1)**0.5, 因此i的取值范围是[2, (n-1)**0.5]
代码
class Solution(object):
def countPrimes(self, n):
"""
:type n: int
:rtype: int
"""
# base case
if n <= 2: return 0
# suppose all nums are primes from 0, 1, ....n-1
primes = [True]*n
primes[0] = primes[1] = False
for i in range(2, int((n-1)**0.5) + 1):
if primes[i] == True:
for j in range(2, (n-1)//i+1):
primes[i*j] = False
return sum(primes)
解法2
埃拉托斯特尼筛法
这里的一个难点是将primes[i* i :n: i]设置为False. 假设我们求小于11的所有质数, 那么从2开始, 2的倍数都设置为False, 从3开始, 3的倍数都设置为False, 为何从ii开始呢? 由于从2开始, 23已经设置为False了, 因此从3开始只需从3*3开始设置, 这样可以避免重复, 也减少了代码的时间复杂度.
代码
class Solution(object):
def countPrimes(self, n):
"""
:type n: int
:rtype: int
"""
# base case
if n <= 2: return 0
# suppose all nums are primes from 0, 1, ....n-1
primes = [True]*n
primes[0] = primes[1] = False
for i in range(2, int((n-1)**0.5) + 1):
if primes[i] == True:
primes[i*i:n:i] = [False]* len(primes[i*i:n:i])
return sum(primes)