[leetcode] 204. Count Primes @ python

原题

Count the number of prime numbers less than a non-negative number, n.

Example:

Input: 10
Output: 4
Explanation: There are 4 prime numbers less than 10, they are 2, 3, 5, 7.

解法1

先构造primes列表, 假设从0, 1, …, n-1都是质数, 我们设置prime[0]和primes[1]为False. 由于2是最小的质数, 那么从2开始的 i, i 的 j倍一定不是质数(2 <= j <= (n-1)/i ).
这里i的取值范围是这样确定的: 假设n-1为合数, 那么一定存在n-1 = i*j, 那么i <= (n-1)**0.5, 因此i的取值范围是[2, (n-1)**0.5]

代码

class Solution(object):
    def countPrimes(self, n):
        """
        :type n: int
        :rtype: int
        """
        # base case
        if n <= 2: return 0
        # suppose all nums are primes from 0, 1, ....n-1
        primes = [True]*n
        primes[0] = primes[1] = False
        for i in range(2, int((n-1)**0.5) + 1):
            if primes[i] == True:
                for j in range(2, (n-1)//i+1):
                    primes[i*j] = False            
            
        return sum(primes)

解法2

埃拉托斯特尼筛法
这里的一个难点是将primes[i* i :n: i]设置为False. 假设我们求小于11的所有质数, 那么从2开始, 2的倍数都设置为False, 从3开始, 3的倍数都设置为False, 为何从ii开始呢? 由于从2开始, 23已经设置为False了, 因此从3开始只需从3*3开始设置, 这样可以避免重复, 也减少了代码的时间复杂度.

代码

class Solution(object):
    def countPrimes(self, n):
        """
        :type n: int
        :rtype: int
        """
        # base case
        if n <= 2: return 0
        # suppose all nums are primes from 0, 1, ....n-1
        primes = [True]*n
        primes[0] = primes[1] = False
        for i in range(2, int((n-1)**0.5) + 1):
            if primes[i] == True:
                primes[i*i:n:i] = [False]* len(primes[i*i:n:i]) 
        return sum(primes)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值