数据挖掘
文章平均质量分 75
DAo_1990
这个作者很懒,什么都没留下…
展开
-
数据挖掘 K-Means++聚类算法
K-Means++聚类算法一、k-Means++ K-Means++ 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 K-Means++算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。原创 2015-07-07 21:55:29 · 3264 阅读 · 1 评论 -
数据挖掘 k-means离群点检测
k-means离群点检测改写一种简单的半监督方法,用于离群点检测。使用一种你熟悉的程序设计语言,如C++或Java,实现该方法,并在两种不同的数据集上进行讨论(1)只有一些被标记的正常对象;(2)只有一些被标记的离群点实例。一、数据集介绍1、Iris数据集介绍 iris以鸢尾花的特征作为数据来源,数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性,是在数据挖掘、数据分类中非常原创 2015-07-07 22:09:38 · 13097 阅读 · 7 评论 -
预测之相似日算法
最近阅读很多关于相似日预测方面的论文,均是通过构建日特征向量,然后计算其相似度,大多数是考虑因子和量化匹配系数不一样,心得如下:1、日特征向量=[ 最高温度 最低温度 日类型 ]相似度计算公式:欧几里得公式 2、日特征向量=[ 气象因子 日分类 星期类型 日天气类型 ]相似度计算公式:夹角余弦公式3、日特征向量=[ 人体舒适度指数 日期差距 星期类型 日天气类型 ]相似度计算公式:夹角余弦公式原创 2015-12-11 21:34:56 · 11582 阅读 · 7 评论