- 博客(97)
- 收藏
- 关注
原创 【PyTorch】(基础三)---- 图像读取和展示
本文介绍如何针对pytorch中的图像利用matplotlib、PIL和tensorboard进行可视化读取和展示
2024-12-05 17:11:23 635
原创 【OpenCV】(一)—— 安装opencv环境
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV 是用 C++ 编写的,但它也有 Python、Java 和 MATLAB 接口,并支持 Windows、Linux、Mac OS、Android 和 iOS 操作系统。这个库提供了大量的图像处理和计算机视觉算法,是开发实时应用的理想选择。
2024-10-12 21:40:44 682
原创 【机器学习】(基础篇七) —— 神经网络
神经网络是一种模仿人脑神经元结构的计算模型,用于处理复杂的数据模式识别和预测问题。它由大量简单的处理单元(称为“神经元”或“节点”)组成,这些单元通过连接权重相互连接。神经网络可以学习从输入数据到输出结果之间的映射关系,从而实现对新数据的分类、回归或其他类型的预测。神经网络通过调整各层间的连接权重来进行训练,以最小化预测结果与实际结果之间的差异。这一过程通常使用反向传播算法来实现。神经网络广泛应用于许多领域,如计算机视觉、自然语言处理、语音识别等。
2024-08-19 21:35:08 563
原创 【机器学习】(基础篇六) —— 数据集的划分和过拟合问题
在机器学习中,数据集通常会被划分为训练集(Training Set)和测试集(Test Set),有时还会包括一个验证集(Validation Set)。这样的划分是为了能够更好地评估模型的性能,并防止过拟合。
2024-08-19 21:31:47 1471
原创 【机器学习】(基础篇五) —— 逻辑回归
逻辑回归(Logistic Regression)是一种广义线性模型,主要用于处理因变量为二分类或多分类(通过独热编码或多输出逻辑回归)的问题。尽管名字中带有“回归”二字,但实际上逻辑回归是一种分类算法,特别适用于估计某种事件发生的概率。实际上,“分类”是应用逻辑回归的目的和结果,但中间过程依旧是“回归”。
2024-08-18 15:42:48 1347
原创 【机器学习】(基础篇四) —— 回归分析
线性回归是回归任务,输入是带有标签的数据,根据数据关系,拟合出一个函数,并利用该函数进行预测等操作。回归分析不止有线性关系,还包括了非线性相关关系等。
2024-08-13 15:52:36 1306
原创 【数据结构和算法】(基础篇三)——栈和队列
栈(Stack)和队列(Queue)是两种非常基本的数据结构,它们主要用于存储和检索元素。尽管它们都用于管理一组数据项,但它们的访问规则和数组都是不同的。
2024-08-11 20:07:35 907
原创 【数据结构和算法】(基础篇二)——链表
数组最麻烦的地方就是其在建立之后大小固定,对于增删数据很不方便。链表的出现解决了这个问题,链表的元素不是在内存中连续存储的,而是通过指针链接在一起的节点集合,这样的设计让链表有了动态的大小。链表是树和图结构的基础。
2024-08-10 16:29:14 862
原创 【Stable Diffusion】(基础篇九)—— 扩展
添加一些SD对应的扩展,可以让你的创作之旅更加简单。首先在webUI的扩展界面中有两种方法可以用于扩展的安装,分别是从扩展列表下载和从网址安装
2024-08-03 17:49:21 1625
原创 【Stable Diffusion】(基础篇八)—— 局部重绘
我们使用SD生成一张整体满意但是某些细节存在问题的时候(比如手没有画好),此时我们不需要舍弃这张画重新生成,而是可以使用局部重绘对一张图片的细节进行修补。
2024-08-02 17:14:42 963
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人