自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(213)
  • 资源 (3)
  • 收藏
  • 关注

原创 vue表格中prop获取的数据为数组情况下的遍历

当后端传Long类型给前端, Long类型数据大于17位时。前端拿到的数据: 第16位会四舍五入, 17位后的数据自动用0代替),在Json中就会出现精度丢失的情况

2021-10-19 17:49:13 64

原创 分布式ID生成算法-雪花算法

算法原理SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:1. 1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。2. 41bit-时间戳,用来记录时间戳,毫秒级。- 41位可以表示2^41 - 1个数字,- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 2^41 - 1,减1是因为可表示的数值范围是从0开始算的,而不是1。- 也就是说41位可以表示..

2021-10-16 15:41:43 367

原创 css3D制作旋转魔方

<!DOCTYPE html><html><head> <meta charset="utf-8" /> <style> /*最外层容器样式*/ .wrap { width: 200px; height: 200px; margin: 200px; position: relative; .

2021-09-23 14:58:12 25

原创 正则符号说明

1 数字:^[0-9]*$2 n位的数字:^\d{n}$3 至少n位的数字:^\d{n,}$4 m-n位的数字:^\d{m,n}$5 零和非零开头的数字:^(0|[1-9][0-9]*)$6 非零开头的最多带两位小数的数字:^([1-9][0-9]*)+(.[0-9]{1,2})?$7 带1-2位小数的正数或负数:^(\-)?\d+(\.\d{1,2})?$8 正数、负数、和小数:^(\-|\+)?\d+(\.\d+)?$9 有两位小数的正实数:^[0-9]+(...

2021-08-30 11:30:04 9

原创 CNN卷积神经网络学习过程(权值更新)

卷积神经网络采用BP算法学习网络参数,BP算法是基于梯度下降原则来更新网络参数。在卷积神经网络中,需要优化的参数有卷积核参数k、下采样层权值β、全连接层网络权值w及各层偏置b。我们以卷积神经网络的期望和输出之间的均方误差为代价函数,目的是最小化该代价函数,使得实际神经网络输出可以对输入做出准确的预测,代价函数如下所示:其中,N为训练样本的数量,是第n个训练样本的真实类别标签,是第n个训练样本经过卷积神经网络学习得到的预测类别标签。卷积层梯度计算一般而言每一个卷积层l的后面都会接一个下采样..

2021-08-03 11:34:01 550 4

原创 CNN卷积神经网络结构

卷积神经网络通常是由四部分组成:输入层、卷积层、下采样层、全连接层和输出层。典型的卷积神经网络中,开始的几层一般是卷积层和下采样层交替出现,靠近输出层的最后几层通常是全连接层,其结构如图2-4所示。一幅原始二维图像输入卷积神经网络网络进入卷积层后,将会被卷积核函数作用提取到输入图像的局部特征,这些局部特征一旦被提取之后,它们之间的位置关系也会随之确定下来。一个卷积核对应一种特征,对同一幅图像采用相同卷积核提取不同位置的相同特征构成一幅特征图,这方式称作卷积神经网的权值共享。通过增加卷积核个数,对输入图像同一

2021-08-03 11:22:20 272

原创 pytorch模型参数赋值——tensor.copy_()方法

module类内部state_dict返回对象只是一个copy,所以修改里面的值并不能影响模型中真正的参数,我们可以借助tensor.copy_()方法来赋值。简单例子:a = torch.tensor([[1,2], [3,4]])b = torch.tensor([[7,8],[9,10]])a.copy_(b)print(a)print(b)...

2021-07-25 17:09:08 840

原创 DOS常用命令

1 查看端口号占用及关闭进程查看端口号:netstat -ano|findstr "8080"关闭对应进程:taskkill /F /pid 11176

2021-06-29 15:51:33 8

原创 mysql启动错误1607 进程意外终止

mysql启动报错,首先想到的是应该查看mysql的日志文件:mysql安装目录/data/*.err。从错误日志

2021-06-21 10:55:07 55

原创 残差网络ResNet源码解析——Pytorch版本

源码GitHub地址

2021-06-18 16:53:57 218

原创 springcloud nacos集群搭建

Nacos集群架构图根据架构图所示,搭建nacos集群最少需要启动了三个节点的Nacos集群。此外,我们还需要提供一个统一的入口给Spring Cloud应用访问,也即是需要为上面启动的的3个Nacos集群做一个负载均衡的访问层,这里我们可以通过nginx来实现。8.1 Nacos配置1 编辑nacos集群配置文件cluster.conf,添加集群IP2 启动nacos(集群模式) sh startup.sh 8.2 Nginx配置1 配置ngin...

2021-06-11 11:10:07 45 1

原创 Linux安装mysql(填坑版)

安装之前,先检测一下系统是否已经安装过mysql: rpm -qa | grep mysql 如果已经安装,可以通过以下命令选择卸载: rpm -e mysql // 普通删除模式 rpm -e --nodeps mysql // 强力删除模式,如果使用上面命令删除时,提示有依赖的其它文件,则用该命令可以对其进行强力删除 安装Mysql工具:CentOS 7 64位、Mysql5.71 到mysql官网下载mysql编译好的二进制...

2021-06-07 16:46:07 14

原创 其它IP无法连接本机Redis问题解决及Redis安装

1 修改redis.conf文件:daemonize为yes,让redis在后台运行;2 注释掉 bind 127.0.0.1,运行本机之外的地址访问;3 protected设置为no,关闭保护模式;关闭防火墙。

2021-06-04 15:07:03 71

原创 torch.nn.Linear()函数

torch.nn.Linear(in_features,out_features,bias=True) 函数是一个线性变换函数:其中,in_features为输入样本的大小,out_features为输出样本的大小,bias默认为true。如果设置bias = false那么该层将不会学习一个加性偏差。Linear()函数通常用于设置网络中的全连接层。用例:import torchx = torch.randn(128, 20) # 输入样本fc = torch.nn...

2021-05-25 17:03:59 311

原创 详解ResNet残差网络

在VGG中,卷积网络达到了19层,在GoogLeNet中,网络史无前例的达到了22层。那么,网络的精度会随着网络的层数增多而增多吗?在深度学习中,网络层数增多一般会伴着下面几个问题计算资源的消耗 模型容易过拟合 梯度消失/梯度爆炸问题的产生问题1可以通过GPU集群来解决,对于一个企业资源并不是很大的问题;问题2的过拟合通过采集海量数据,并配合Dropout正则化等方法也可以有效避免;问题3通过Batch Normalization也可以避免。貌似我们只要无脑的增加网络的层数,我们就能从此获益,但实

2021-05-25 10:20:10 194

转载 如何一步一步提高图像分类准确率?

一、问题描述当我们在处理图像识别或者图像分类或者其他机器学习任务的时候,我们总是迷茫于做出哪些改进能够提升模型的性能(识别率、分类准确率)。。。或者说我们在漫长而苦恼的调参过程中到底调的是哪些参数。。。所以,我花了一部分时间在公开数据集CIFAR-10 [1] 上进行探索,来总结出一套方法能够快速高效并且有目的性地进行网络训练和参数调整。CIFAR-10数据集有60000张图片,每张图片均为分辨率为32*32的彩色图片(分为RGB3个信道)。CIFAR-10的分类任务是将每张图片分成青蛙、卡车、飞机

2021-05-20 16:43:50 275

原创 Springboot 整合Rabbit MQ

该篇文章内容较多,包括有rabbitMq相关的一些简单理论介绍,provider消息推送实例,consumer消息消费实例,Direct、Topic、Fanout的使用,消息回调、手动确认等。 (但是关于rabbitMq的安装,就不介绍了)在安装完rabbitMq后,输入http://ip:15672/,是可以看到一个简单后台管理界面的。在这个界面里面我们可以做些什么?可以手动创建虚拟host,创建用户,分配权限,创建交换机,创建队列等等,还有查看队列消息,消费效率,推送效率等等。以上..

2021-04-30 15:39:38 21 1

原创 图解Transformer(译)

作者: 龙心尘时间:2019年1月出处:https://blog.csdn.net/longxinchen_ml/article/details/86533005审校:百度NLP、龙心尘翻译:张驰、毅航、Conrad原作者:Jay Alammar原链接:https://jalammar.github.io/illustrated-transformer/编者按:前一段时间谷歌推出的BERT模型在11项NLP任务中夺得SOTA结果,引爆了整个NLP界。而BERT取得成功的一个关键因素是Tra

2021-04-16 15:59:55 58

转载 你管这破玩意叫 IO 多路复用?

为了讲多路复用,当然还是要跟风,采用鞭尸的思路,先讲讲传统的网络 IO 的弊端,用拉踩的方式捧起多路复用 IO 的优势。为了方便理解,以下所有代码都是伪代码,知道其表达的意思即可。 Let...

2021-04-15 10:39:30 19

转载 为什么微服务一定要有网关

- 什么是服务网关 -服务网关 = 路由转发 + 过滤器。1、路由转发:接收一切外界请求,转发到后端的微服务上去;2、过滤器:在服务网关中可以完成一系列的横切功能,例如权限校验、限流以及监控等,这些都可以通过过滤器完成(其实路由转发也是通过过滤器实现的)。- 为什么需要服务网关 -上述所说的横切功能(以权限校验为例)可以写在三个位置: 每个服务自己实现一遍; 写到一个公共的服务中,然后...

2021-04-08 10:18:36 22

转载 mysql和oracle的区别(功能性能、选择、使用它们时的sql等对比)

一、并发性并发性是oltp数据库最重要的特性,但并发涉及到资源的获取、共享与锁定。mysql:mysql以表级锁为主,对资源锁定的粒度很大,如果一个session对一个表加锁时间过长,会让其他session无法更新此表中的数据。虽然InnoDB引擎的表可以用行级锁,但这个行级锁的机制依赖于表的索引,如果表没有索引,或者sql语句没有使用索引,那么仍然使用表级锁。oracle:oracle使用行级锁,对资源锁定的粒度要小很多,只是锁定sql需要的资源,并且加锁是在数据库中的数据行上,不依赖与...

2021-03-09 16:54:07 78

原创 SpringCloud整合Sentinel实现接口限流

本文代码参考若依项目http://doc.ruoyi.vip/ruoyi/涉及三个服务:网关模块ruoyi-gateway、业务模块ruoyi-system、代码生成模块ruoyi-gen,需要把服务注册到Nacos上。一.实现Sentinel限流Sentinel 支持对 Spring Cloud Gateway、Netflix Zuul 等主流的 API Gateway 进行限流。1、添加依赖<!-- SpringCloud Ailibaba Sentinel -->&l

2021-03-04 11:21:09 234 3

原创 Springboot-权限注解

权限注解作用在Controller的方法上,作用是调用者是否有权限调用该接口。(本文代码参考若依项目)1.权限示例1.数据权限示例// 符合system:user:list权限要求@PreAuthorize(hasPermi = "system:user:list")@GetMapping("/list")public TableDataInfo list(SysUser user){ startPage(); List<SysUser> list

2021-03-03 15:30:08 316 5

转载 Springboot-权限管理

权限设计具体来说可以分为功能权限和数据权限。功能权限就是角色能操作哪些接口,而数据权限就是角色能够获取到的哪些数据。形象点来说,如果现在有一个公司,公司上下有很多部门,部门里有很多员工,而数据权限就是为了让某个部门的人只能获取到自己部门或着是指定部门的员工信息。二、新建如下表分别是岗位表,部门表,用户岗位关联表和角色部门关联表my_user表中添加dept_id字段。my_role表中添加data_scpoe字段。前一个很好理解,就是部门的id,后一个代表的就是角色的数据权限范围这篇文

2021-03-03 14:33:22 445 1

原创 Springboot-参数验证

spring boot中可以用@Validated来校验数据,如果数据异常则会统一抛出异常,方便异常中心统一处理。1、基础使用 因为spring boot已经引入了基础包,所以直接使用就可以了。首先在controller上声明@Validated需要对数据进行校验。public AjaxResult add(@Validated @RequestBody SysUser user){ .....}2、然后在对应字段Get方法加上参数校验注解,如果不符合验证要求,则会以messag

2021-03-03 10:36:12 43

原创 Springboot-异常处理

通常一个web框架中,有大量需要处理的异常。比如业务异常,权限不足等等。前端通过弹出提示信息的方式告诉用户出了什么错误。 通常情况下我们用try.....catch....对异常进行捕捉处理,但是在实际项目中对业务模块进行异常捕捉,会造成代码重复和繁杂, 我们希望代码中只有业务相关的操作,所有的异常我们单独设立一个类来处理它。全局异常就是对框架所有异常进行统一管理。 我们在可能发生异常的方法里throw抛给控制器。然后由全局异常处理器对异常进行统一处理。 如此,我们的Controller中的方法就可以很简洁

2021-03-03 10:33:49 18

原创 Springboot-事务管理

新建的Spring Boot项目中,一般都会引用spring-boot-starter或者spring-boot-starter-web,而这两个起步依赖中都已经包含了对于spring-boot-starter-jdbc或spring-boot-starter-data-jpa的依赖。 当我们使用了这两个依赖的时候,框架会自动默认分别注入DataSourceTransactionManager或JpaTransactionManager。 所以我们不需要任何额外配置就可以用@Transactional注解进

2021-03-03 09:28:03 25

转载 谈谈RNN的梯度消失/爆炸问题

尽管 Transformer 类的模型已经攻占了 NLP 的多数领域,但诸如 LSTM、GRU之类的 RNN模型依然在某些场景下有它的独特价值,所以 RNN 依然是值得我们好好学习的模型。而于 RNN 梯度的相关分析,则是一个从优化角度思考分析模型的优秀例子,值得大家仔细琢磨理解。君不见,诸如“LSTM 为什么能解决梯度消失/爆炸”等问题依然是目前流行的面试题之一。▲经典的LSTM关于此类问题,已有不少网友做出过回答,然而笔者查找了一些文章(包括知乎上的部分回答、专栏以及经典的英文博客),发现没..

2020-12-01 11:55:58 286 1

转载 Softmax和Cross-entropy是什么关系

softmax 虽然简单,但是其实这里面有非常的多细节值得一说。我们挨个捋一捋。1. 什么是 Softmax?首先,softmax 的作用是把 一个序列,变成概率。他能够保证: 所有的值都是 [0, 1] 之间的(因为概率必须是 [0, 1]) 所有的值加起来等于 1 从概率的角度解释 softmax 的话,就是 2. 文档里面跟 Softmax 有关的坑这里穿插一个“小坑”,很多d...

2020-11-19 10:29:20 131

原创 卷积的本质及物理意义

提示:对卷积的理解分为三部分讲解1)信号的角度2)数学家的理解(外行)3)与多项式的关系1 来源卷积其实就是为冲击函数诞生的。“冲击函数”是狄拉克为了解决一些瞬间作用的物理现象而提出的符号。古人曰:“说一堆大道理不如举一个好例子”,冲量这一物理现象很能说明“冲击函数”。在t时间内对一物体作用F的力,倘若作用时间t很小,作用力F很大,但让Ft的乘积不变,即冲量不变。于是在用t做横坐标、F做纵坐标的坐标系中,就如同一个面积不变的长方形,底边被挤的窄窄的,高度被挤的高高的,在数学中它可以被挤到..

2020-10-25 19:43:31 89

转载 分布式锁用 Redis 还是 Zookeeper

为什么用分布式锁?在讨论这个问题之前,我们先来看一个业务场景:系统A是一个电商系统,目前是一台机器部署,系统中有一个用户下订单的接口,但是用户下订单之前一定要去检查一下库存,确保库存足够了才会给用户下单。由于系统有一定的并发,所以会预先将商品的库存保存在redis中,用户下单的时候会更新redis的库存。此时系统架构如下:但是这样一来会产生一个问题:假如某个时刻,redis里面的某个商品库存为1,此时两个请求同时到来,其中一个请求执行到上图的第3步,更新数据库的库存为0,但是第4步还

2020-07-16 10:03:59 72

转载 彻底搞懂机器学习中的正则化

正则化在机器学习当中是十分常见的,本次就来比较完整地总结一下~首先列一下本篇文章所包含的内容目录,方便各位查找: LP范数 L1范数 L2范数 L1范数和L2范数的区别 Dropout Batch Normalization 归一化、标准化 & 正则化 正则化在总结正则化(Regularization)之前,我们先谈一谈正则化是什么,为什么要正则化。其实正则化的本质很简单,就是对某一问题加以先验的限制或约束以达到

2020-07-02 11:35:58 144

转载 最大似然估计

似然与概率在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率(Probability)几乎是一对同义词,但是在统计学中似然和概率却是两个不同的概念。概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最后是哪一面朝上,但是根据硬币的性质我们可以推测任何一面朝上的可能性均为50%,这个概率只有在抛硬币之前才是有意义的,抛完硬币后

2020-06-17 16:49:39 88

转载 深入理解Java序列化

1. 什么是Java对象序列化 Java平台允许我们在内存中创建可复用的Java对象,但一般情况下,只有当JVM处于运行时,这些对象才可能存在,即,这些对象的生命周期不会比JVM的生命周期更长。但在现实应用中,就可能要求在JVM停止运行之后能够保存(持久化)指定的对象,并在将来重新读取被保存的对象。Java对象序列化就能够帮助我们实现该功能。 使用Java对象序列化,在保存对象时,...

2020-05-20 10:53:15 39

转载 6 种限流实现方案

假设一个系统只能为 10W 人提供服务,突然有一天因为某个热点事件,造成了系统短时间内的访问量迅速增加到了 50W,那么导致的直接结果是系统崩溃,任何人都不能用系统了,显然只有少人数能用远比所有人都不能用更符合我们的预期,因此这个时候我们要使用「限流」了。限流分类限流的实现方案有很多种,磊哥这里稍微理了一下,限流的分类如下所示: 合法性验证限流:比如验证码、IP 黑名单等,这些手段可以有效的防止恶意攻击和爬虫采集; 容器限流:比如 Tomcat、Nginx 等限流手段,其中 Tomc

2020-05-20 10:47:40 415

转载 卷积神经网络如何进行图像识别的

在机器视觉的概念中,图像识别是指软件具有分辨图片中的人物、位置、物体、动作以及笔迹的能力。计算机可以应用机器视觉技巧,结合人工智能以及摄像机来进行图像识别。 什么是图像识别?为什么要进行图像识别? 在机器视觉的概念中,图像识别是指软件具有分辨图片中的人物、位置、物体、动作以及笔迹的能力。计算机可以应用机器视觉技巧,结合人工智能以及摄像机来进行图像识别。 ...

2020-04-27 11:03:21 5811

转载 优化MySQL千万级大表

千万级大表如何优化,这是一个很有技术含量的问题,通常我们的直觉思维都会跳转到拆分或者数据分区,在此我想做一些补充和梳理,想和大家做一些这方面的经验总结,也欢迎大家提出建议。从一开始脑海里开始也是火光四现,到不断的自我批评,后来也参考了一些团队的经验,我整理了下面的大纲内容。既然要吃透这个问题,我们势必要回到本源,我把这个问题分为三部分:“千万级”,“大表”,“优化”,也分别对...

2019-11-05 10:13:41 88 1

原创 facenet源码解读——facenet_train_classifier.py

"""Training a face recognizer with TensorFlow based on the FaceNet paperFaceNet: A Unified Embedding for Face Recognition and Clustering: http://arxiv.org/abs/1503.03832"""# MIT License# # Copyr...

2019-10-15 17:24:21 242

原创 facenet源码解读——facenet_train.py

"""Training a face recognizer with TensorFlow based on the FaceNet paperFaceNet: A Unified Embedding for Face Recognition and Clustering: http://arxiv.org/abs/1503.03832"""# MIT License# # Copyr...

2019-10-15 17:22:53 112

转载 计算机网络-应用层

文章目录域名系统 文件传送协议 动态主机配置协议 远程登录协议 电子邮件协议 1. SMTP 2. POP3 3. IMAP 常用端口 Web 页面请求过程 1. DHCP 配置主机信息 2. ARP 解析 MAC 地址 3. DNS 解析域名 4. HTTP 请求页面 域名系统DNS 是一个分布式数据库,提供了主机名和 IP 地址之间相互...

2019-06-03 13:59:08 66

jdk8安装包.zip

Windows64 jdk8版本

2021-09-08

springbootdemo.zip

springbootdemo.zip

2021-09-07

作业3.docx

面向对象

2019-10-16

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除