素数

Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Now your task is to check whether this conjecture holds for integers up to 107.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where

1)      Both a and b are prime

2)      a + b = n

3)      a ≤ b

Sample Input

2

6

4

Sample Output

Case 1: 1

Case 2: 1

Note

1.      An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...

这个题一看就是一个素数问题,然后枚举就可以,但是提交错了好几次,试了试边界10000000,编译器报错,提示下标超界,把max改成了20000005就对了

import java.util.Arrays;
import java.util.Scanner;

public class Main {
	static final int max=20000005;
	static boolean vis[]=new boolean[max];
	static int prime[]=new int[2000005];
	public static void is_Prime(){
		Arrays.fill(vis, true);
		vis[0]=vis[1]=false;
		int k=0;
		for(int i=2;i<max;i++){//可不能等于,要不然等于max就数组越界了
			if(vis[i])
				prime[k++]=i;
			for(int j=0;j<k&&i*prime[j]<max;j++){
					vis[i*prime[j]]=false;
					if(i%prime[j]==0){
						break;
					}
				}
			
		}
		//System.out.println(k);
		//System.out.println(prime[k-1 ]);
	}
    public static void main(String[] args) {
	   is_Prime();
	   Scanner scan=new Scanner(System.in);
	   int t=scan.nextInt();
	   int n=0;
	   int k=1;
	   while(t!=0){
		   n=scan.nextInt();
		   System.out.print("Case "+k+": ");
		   long cnt=0;
		   for(int i=0;prime[i]<n;i++){
			   if(vis[n-prime[i]]&&prime[i]<=n-prime[i]){
				   cnt++;
			   }
		   }
		   System.out.println(cnt);
		   t--;
		   k++;
		   }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小鱼爱吃火锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值