一、引言
1.1 研究背景与意义
近年来,人工智能(AI)技术发展迅猛,已成为全球瞩目的焦点。从最初的理论研究到如今广泛应用于各个领域,AI 经历了从概念到实践的巨大跨越。其发展历程见证了多个关键阶段的突破,从早期的简单算法到如今的深度学习、强化学习等复杂模型,AI 技术不断演进,处理能力和智能水平大幅提升。
在金融行业,AI 技术的应用也越来越广泛。金融行业作为经济体系的核心组成部分,具有数据丰富、业务复杂、风险敏感度高等特点,天然适合 AI 技术的应用与发展。一方面,金融行业积累了海量的历史数据,涵盖客户信息、交易记录、市场行情等各个方面,这些数据为 AI 模型的训练提供了充足的素材,使其能够学习到丰富的模式和规律。另一方面,金融业务的复杂性,如风险评估、投资决策、客户服务等,对智能化解决方案有着强烈的需求,AI 技术能够通过数据分析和模型预测,为这些复杂业务提供高效、精准的支持。
研究 AI 对金融行业的影响具有重要的现实意义和理论价值。在现实层面,随着 AI 技术在金融领域的深入应用,金融机构的运营模式、服务方式、风险管理等方面都发生了深刻变革。了解这些变化,有助于金融机构更好地把握技术发展趋势,优化业务流程,提升竞争力,同时也能帮助监管部门制定更有效的监管政策,防范金融风险。从理论角度来看,AI 与金融