1.
案例背景
电商平台积累了大量用户的浏览、收藏、加购物车和购买等行为数据。通过对这些数据进行分析,了解用户的购买行为模式,预测用户的购买意向,有助于电商平台进行精准营销、个性化推荐,提高用户转化率和平台销售额。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
# 数据读取
data = pd.read_csv('ecommerce_user_behavior.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['age'] = data['age'].fillna(data['age'].median())
data['gender'] = data['gender'].fillna(data['gender'].mode()[0])
# 特征工程
# 计算用户的浏览、收藏、加购物车次数总和
data['total_interactions'] = data[['view_count', 'favorite_count', 'cart_count']].sum(axis=1)
# 对性别进行独热编码
gender_dummies = pd.get_dummies(data['gender'], prefix='gender')
data = pd.concat([data, gender_dummies], axis=1)
# 特征选择
features = ['age', 'total_interactions', 'view_count', 'favorite_count', 'cart_count'] + list(gender_dummies.columns)
target = 'purchase_intention'
X = data[features]
y = data[target]