完整的 Python 数据分析案例:电商用户购买行为分析与购买意向预测

1.

案例背景

电商平台积累了大量用户的浏览、收藏、加购物车和购买等行为数据。通过对这些数据进行分析,了解用户的购买行为模式,预测用户的购买意向,有助于电商平台进行精准营销、个性化推荐,提高用户转化率和平台销售额。

代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

# 数据读取
data = pd.read_csv('ecommerce_user_behavior.csv')

# 数据探索性分析
print('数据基本信息:')
data.info()

# 查看数据集行数和列数
rows, columns = data.shape

if rows < 1000:
    # 小数据集(行数少于 1000)查看全量数据信息
    print('数据全部内容信息:')
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    # 大数据集查看数据前几行信息
    print('数据前几行内容信息:')
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 数据清洗
# 处理缺失值
data['age'] = data['age'].fillna(data['age'].median())
data['gender'] = data['gender'].fillna(data['gender'].mode()[0])

# 特征工程
# 计算用户的浏览、收藏、加购物车次数总和
data['total_interactions'] = data[['view_count', 'favorite_count', 'cart_count']].sum(axis=1)

# 对性别进行独热编码
gender_dummies = pd.get_dummies(data['gender'], prefix='gender')
data = pd.concat([data, gender_dummies], axis=1)

# 特征选择
features = ['age', 'total_interactions', 'view_count', 'favorite_count', 'cart_count'] + list(gender_dummies.columns)
target = 'purchase_intention'
X = data[features]
y = data[target]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值