1.
案例背景
在农业领域,准确预测作物产量对于制定农业政策、保障粮食安全、优化农产品市场供需平衡至关重要。通过分析气象数据(如温度、降水、光照等)、土壤条件(如肥力、酸碱度等)和农业管理措施(如施肥量、灌溉量等)等多方面因素,构建产量预测模型,有助于农民合理安排生产计划,提高农业生产效益。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error, r2_score
# 数据读取
data = pd.read_csv('agriculture_crop_yield.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['temperature'] = data['temperature'].fillna(data['temperature'].mean())
data['precipitation'] = data['precipitation'].fillna(data['precipitation'].median())
data = data.dropna(subset=['yield'])
# 特征工程
# 计算温度和降水的交互项
data['temp_precip_product'] = data['temperature'] * data['precipitation']
# 对作物类型进行独热编码
crop_type_dummies = pd.get_dummies(data['crop_type'], prefix='crop')
data = pd.concat([data, crop_type_dummies], axis=1)
# 特征选择
features