完整的 Python 数据分析案例:航空公司客户满意度预测

目录

1.

案例背景

代码实现

2. 主要的代码难点解析

2.1 数据清洗 - 缺失值处理

2.2 特征工程 - 新特征计算与独热编码

2.3 特征选择

2.4 模型训练与评估

2.5 数据可视化

3. 可能改进的代码

3.1 数据清洗与特征工程改进

3.2 模型改进

3.3 可视化改进


1.

案例背景

航空公司的客户满意度对于其市场竞争力和长期发展至关重要。通过分析客户的基本信息、航班服务体验(如航班准点率、机上服务质量、行李托运服务等),构建客户满意度预测模型,有助于航空公司了解客户需求,针对性地改进服务,提高客户忠诚度和市场份额。

代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix
from sklearn.preprocessing import StandardScaler

# 数据读取
data = pd.read_csv('airline_customer_satisfaction.csv')

# 数据探索性分析
print('数据基本信息:')
data.info()

# 查看数据集行数和列数
rows, columns = data.shape

if rows < 1000:
    # 小数据集(行数少于 1000)查看全量数据信息
    print('数据全部内容信息:')
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    # 大数据集查看数据前几行信息
    print('数据前几行内容信息:')
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 数据清洗
# 处理缺失值
data['flight_distance'] = data['flight_distance'].fillna(data['flight_distance'].mean())
data['departure_delay'] = data['departure_delay'].fillna(data['departure_delay'].median())
data = data.dropna(subset=['satisfaction'])

# 特征工程
# 计算航班准点情况(如果延迟时间大于 0 为不准点,否则为准点)
data['on_time'] = (data['departure_delay'] <= 0).astype(int)

# 对舱位等级进行独热编码
class_dummies = pd.get_dummies(data['class'], prefix='class')
data = pd.concat([data, class_dummies], axis=1)

# 特征选择
features = ['flight_distance', 'on_time', 'inflight_wifi_service', 'seat_comfort'] + list(class_dummies.columns)
target = 'satisfaction'
X = data[features]
y = data[target]

# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

# 模型训练
model = SVC(kernel='rbf', random_state=42)
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)

print(f"准确率: {accuracy}")
print(f"精确率: {precision}")
print(f"召回率: {recall}")
print(f"F1 值: {f1}")
print("混淆矩阵:")
print(conf_matrix)

# 数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值