目录
1.
案例背景
在在线游戏行业中,准确预测玩家是否会付费以及付费金额,对于游戏运营商制定营销策略、优化游戏设计和提高盈利能力至关重要。本案例将基于玩家的游戏行为数据(如游戏时长、登录频率、道具使用次数等)、玩家基本信息(如年龄、性别等),构建玩家付费预测模型。
代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler
# 数据读取
data = pd.read_csv('online_game_player_payment.csv')
# 数据探索性分析
print('数据基本信息:')
data.info()
# 查看数据集行数和列数
rows, columns = data.shape
if rows < 1000:
# 小数据集(行数少于 1000)查看全量数据信息
print('数据全部内容信息:')
print(data.to_csv(sep='\t', na_rep='nan'))
else:
# 大数据集查看数据前几行信息
print('数据前几行内容信息:')
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 数据清洗
# 处理缺失值
data['game_duration'] = data['game_duration'].fillna(data['game_duration'].mean())
data['login_frequency'] = data['login_frequency'].fillna(data['login_frequency'].median())
data = data.dropna(subset=['is_paying'])
# 特征工程
# 计算游戏投入度(游戏时长 * 登录频率)
data['game_involvement'] = data['game_duration'] * data['login_frequency']
# 对玩家性别进行独热编码
gender_dummies = pd.get_dummies(data['gender'], prefix='gender')
data = pd.concat([data, gender_dummies], axis=1)
# 特征选择
features = ['game_duration', 'login_frequency', 'game_involvement', 'age'] + list(gender_dummies.columns)
target = 'is_paying'
X = data[features]
y = data[target]
# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 模型训练
model = DecisionTreeClassifier(random_state=42)
model.fit(X_train, y_train)
# 模型预测
y_pred = model.predict(X_test)
# 模型评估
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)
print(f"准确率: {accuracy}")
print("混淆矩阵:")
print(conf_matrix)
print("分类报告:")
print(class_report)
# 数据可视化
# 不同性别玩家的付费比例柱状图
gender_payment_ratio = data.groupby('gender&#