完整的 Python 数据分析案例:新能源汽车销量预测

目录

1.

案例背景

代码实现

2. 主要的代码难点解析

2.1 数据清洗 - 缺失值处理

2.2 特征工程 - 新特征计算与独热编码

2.3 多项式特征转换

2.4 模型训练与评估

2.5 数据可视化

3. 可能改进的代码

3.1 数据清洗与特征工程改进

3.2 模型改进

3.3 可视化改进


1.

案例背景

随着环保意识的增强和能源结构的转型,新能源汽车市场呈现出快速发展的态势。准确预测新能源汽车的销量,对于汽车制造商合理安排生产计划、优化供应链管理,以及政府制定相关产业政策都具有重要意义。本案例将结合新能源汽车的历史销量数据、政策补贴情况、电池技术进步指标、油价波动等因素,构建新能源汽车销量预测模型。

代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures

# 数据读取
data = pd.read_csv('new_energy_vehicle_sales.csv')

# 数据探索性分析
print('数据基本信息:')
data.info()

# 查看数据集行数和列数
rows, columns = data.shape

if rows < 1000:
    # 小数据集(行数少于 1000)查看全量数据信息
    print('数据全部内容信息:')
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    # 大数据集查看数据前几行信息
    print('数据前几行内容信息:')
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 数据清洗
# 处理缺失值
data['subsidy_amount'] = data['subsidy_amount'].fillna(data['subsidy_amount'].mean())
data['battery_energy_density'] = data['battery_energy_density'].fillna(data['battery_energy_density'].median())
data = data.dropna(subset=['sales_volume'])

# 特征工程
# 计算补贴强度(补贴金额 / 车辆平均价格)
data['subsidy_intensity'] = data['subsidy_amount'] / data['average_vehicle_price']

# 对新能源汽车类型进行独热编码
vehicle_type_dummies = pd.get_dummies(data['vehicle_type'], prefix='vehicle_type')
data = pd.concat([data, vehicle_type_dummies], axis=1)

# 特征选择
features = ['subsidy_intensity', 'battery_energy_density', 'oil_price', 'month'] + list(vehicle_type_dummies.columns)
target = 'sales_volume'
X = data[features]
y = data[target]

# 多项式特征转换
poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2, random_state=42)

# 模型训练
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"均方根误差 (RMSE): {rmse}")
print(f"决定系数 (R²): {r2}")

# 数据可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值