完整的 Python 数据分析案例:AI 生成内容在媒体行业的应用效果分析

目录

1.

案例背景

代码实现

2. 主要的代码难点解析

2.1 数据清洗 - 缺失值处理

2.2 特征工程 - 新特征计算与独热编码

2.3 多项式特征转换

2.4 模型训练与评估

2.5 数据可视化

3. 可能改进的代码

3.1 数据清洗与特征工程改进

3.2 模型改进

3.3 可视化改进


1.

案例背景

随着人工智能技术的飞速发展,AI 生成内容(AIGC)在媒体行业的应用越来越广泛。从新闻写作、视频脚本创作到图像生成,AIGC 为媒体行业带来了新的机遇和挑战。分析 AIGC 在媒体行业的应用效果,有助于媒体机构更好地利用这项技术,提高内容生产效率和质量,满足用户的需求。本案例将基于媒体平台的相关数据,如内容阅读量、互动率、创作成本等,评估 AIGC 的应用效果。

代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.preprocessing import PolynomialFeatures

# 数据读取
data = pd.read_csv('media_aigc_effect.csv')

# 数据探索性分析
print('数据基本信息:')
data.info()

# 查看数据集行数和列数
rows, columns = data.shape

if rows < 1000:
    # 小数据集(行数少于 1000)查看全量数据信息
    print('数据全部内容信息:')
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    # 大数据集查看数据前几行信息
    print('数据前几行内容信息:')
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 数据清洗
# 处理缺失值
data['content_reading_volume'] = data['content_reading_volume'].fillna(data['content_reading_volume'].mean())
data['interaction_rate'] = data['interaction_rate'].fillna(data['interaction_rate'].median())
data = data.dropna(subset=['application_effect_score'])

# 特征工程
# 计算内容价值指标(阅读量 * 互动率)
data['content_value'] = data['content_reading_volume'] * data['interaction_rate']

# 对内容类型进行独热编码
content_type_dummies = pd.get_dummies(data['content_type'], prefix='content_type')
data = pd.concat([data, content_type_dummies], axis=1)

# 特征选择
features = ['content_value', 'creation_cost', 'time_to_produce'] + list(content_type_dummies.columns)
target = 'application_effect_score'
X = data[features]
y = data[target]

# 多项式特征转换
poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_poly, y, test_size=0.2, random_state=42)

# 模型训练
model = Ridge(alpha=1.0, random_state=42)
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
mse = mean_squared_error(y_test, y_pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test, y_pred)
print(f"均方误差 (MSE): {mse}")
print(f"均方根误差 (RMSE): {rmse}")
print(f"决定系数 (R²): {r2}")

# 数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值