基于 Python 的 “AI 绘画技术发展态势” 数据分析案例

目录

一、案例背景

二、代码实现

2.1 数据收集

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 新闻发布趋势分析

2.4.2 社交媒体讨论热度分析

2.4.3 关键词分析

2.4.4 情感分析

三、主要的代码难点解析

2.1 数据收集

2.2 数据清洗 - 文本处理

2.3 数据分析 - 关键词提取

2.4 数据分析 - 情感分析

2.5 数据可视化

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进

4.4 关键词分析改进


一、案例背景

近年来,AI 绘画技术如 Midjourney、StableDiffusion 等取得了突破性进展,引发了广泛的社会关注和讨论。AI 绘画以其高效、创意丰富的特点,在设计、艺术创作、娱乐等多个领域展现出巨大的应用潜力。一方面,它为创作者提供了新的工具和思路,降低了创作门槛;另一方面,也引发了诸如版权归属、艺术创作伦理等方面的争议。同时,市场上相关产品不断涌现,竞争日益激烈。本案例将运用 Python 对 AI 绘画技术的发展态势进行多维度分析,帮助我们更好地了解其现状和未来趋势。

二、代码实现

import requests
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from wordcloud import WordCloud
import json

2.1 数据收集

从科技新闻网站、社交媒体平台、学术数据库等渠道收集数据。这里以模拟从科技新闻 API 和社交媒体 JSON 文件获取数据为例。

# 从科技新闻API获取AI绘画相关新闻数据
news_url = 'https://tech_news_api.com/ai_painting_news'
news_headers = {
    'Authorization': 'Bearer your_news_api_token'
}
news_response = requests.get(news_url, headers=news_headers)
news_data = news_response.json()

news_df = pd.DataFrame(news_data['articles'])

# 从社交媒体获取AI绘画相关话题讨论数据
with open('social_media_ai_painting.json', 'r', encoding='utf-8') as f:
    social_data = json.load(f)

social_df = pd.DataFrame(social_data)

2.2 数据探索性分析

# 查看新闻数据基本信息
print(news_df.info())
# 查看社交媒体讨论数据前几行
print(social_df.head())

# 统计新闻数据的缺失值情况
print(news_df.isnull().sum())
# 查看社交媒体讨论数据中点赞数的描述性统计信息
print(social_df['likes'].describe())

2.3 数据清洗

# 处理新闻数据的缺失值,删除标题或内容为空的记录
news_df = news_df.dropna(subset=['title', 'content'])

# 处理社交媒体讨论数据的文本,去除特殊字符和停用词
import re
from nltk.corpus import stopwords
import nltk
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

def clean_text(text):
    text = re.sub(r'[^a-zA-Z]', ' ', text)
    text = text.lower()
    words = text.split()
    filtered_words = [word for word in words if word not in stop_words]
    return ' '.join(filtered_words)

social_df['clean_text'] = social_df['text'].apply(clean_text)

2.4 数据分析

2.4.1 新闻发布趋势分析

# 将新闻发布日期列转换为日期时间类型
news_df['published_date'] = pd.to_datetime(news_df['published_date'])
news_df['year_month'] = news_df['published_date'].dt.to_period('M')

# 统计每月新闻发布数量
monthly_news_count = news_df.groupby('year_month').size()

# 绘制每月新闻发布数量的折线图
plt.figure(figsize=(12, 6))
monthly_news_count.plot()
plt.title('Monthly News Publication Count about AI Painting')
plt.xlabel('Year - Month')
plt.ylabel('News Count')
plt.xticks(rotation=45)
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值