目录
一、案例背景
近年来,以 ChatGPT 为代表的大语言模型在自然语言处理领域掀起了巨大的浪潮,在智能客服、内容创作、教育辅助等众多领域得到了广泛应用。这些模型凭借强大的语言理解和生成能力,为用户带来了全新的交互体验,但同时也面临着诸如回答准确性、内容连贯性、对复杂问题的处理能力等方面的挑战。对大语言模型的应用效果和用户体验进行深入分析,有助于模型开发者进一步优化模型性能,也能为企业和用户在选择和使用大语言模型时提供参考依据。
二、代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from textblob import TextBlob
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
2.1 数据收集
从大语言模型的官方论坛、社交媒体平台(如 Twitter、Reddit)以及专门的科技评测网站收集用户对 ChatGPT 等大语言模型的评价数据。这里假设通过 API 和网页爬虫获取了相关数据,并存储在llm_reviews.csv
文件中。
data = pd.read_csv('llm_reviews.csv')
2.2 数据探索性分析
# 查看数据基本信息
print(data.info())
# 查看数据集行数和列数
rows, columns = data.shape
# 查看数据集行数和列数
if rows < 10:
print(data.to_csv(sep='\t', na_rep='nan'))
else:
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 统计不同大语言模型的评价数量
model_count = data['model_name'].value_counts()
print(model_count)
# 查看评分的分布情况
sns.histplot(data['rating'], kde=True)
plt.title('Distribution of Ratings for Large Language Models')
plt.xlabel('Rating')
plt.ylabel('Count')
plt.show()
2.3 数据清洗
# 处理缺失值
data.dropna(subset=['review_text', 'rating'], inplace=True)
# 去除重复的评价
data = data.drop_duplicates()
# 文本清洗
import re
def clean_text(text):
text = re.sub(r'[^\w\s]', '', text)
text = text.lower()
return text
data['clean_review_text'] = data['review_text'].apply(clean_text)
2.4 数据分析
2.4.1 不同模型的平均评分对比
average_rating_by_model = data.groupby('model_name')['rating'].mean().reset_index()
plt.figure(figsize=(10, 6))
sns.barplot(x='model_name', y='rating', data=average_rating_by_model)
plt.title('Average Rating of Different Large Language Models')
plt.xlabel('Model Name')
plt.ylabel('Average Rating')
plt.xticks(rotation=45)
plt.show()
2.4.2 用户评价情感分析
data['sentiment'] = data['clean_review_text'].apply(lambda x: TextBlob(x).sentiment.polarity)
# 绘制情感极性分布直方图
plt.figure(figsize=(10, 6))
sns.histplot(data['sentiment'], kde=True)
plt.title('Sentiment Polarity Distribution of User Reviews')
plt.xlabel('Sentiment Polarity')
plt.ylabel('Count')
plt.show()