Python 数据分析实战:短视频平台用户行为与内容传播洞察

目录

一、案例背景

二、代码实现

2.1 数据收集

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 用户行为偏好分析

2.4.2 视频传播效果分析

2.4.3 热门视频预测模型

三、主要的代码难点解析

3.1 数据收集

3.2 数据清洗 - 视频标签处理

3.3 数据分析 - 用户行为偏好分析

3.4 数据分析 - 热门视频预测模型

3.5 数据可视化

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进

4.4 特征工程改进

4.5 模型评估与调优改进


一、案例背景

在移动互联网时代,短视频平台如抖音、快手等发展迅猛,成为人们获取信息、娱乐和社交的重要渠道。大量用户在平台上上传、观看、点赞、评论和分享短视频,形成了庞大而复杂的数据。对于短视频平台运营方、内容创作者和广告投放商来说,深入了解用户行为和内容传播规律至关重要。通过对短视频平台数据的分析,可以挖掘用户喜好,优化内容推荐算法,制定更有效的营销策略,提升平台的用户活跃度和商业价值。

二、代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

2.1 数据收集

假设从短视频平台的开放 API 获取了用户行为数据和视频内容数据,存储在short_video_data.csv文件中,包含用户 ID、视频 ID、行为类型(观看、点赞、评论、分享)、视频标签、视频时长、发布时间等信息。

data = pd.read_csv('short_video_data.csv')

2.2 数据探索性分析

# 查看数据基本信息
print(data.info())

# 查看数据集行数和列数
rows, columns = data.shape

# 查看数据集行数和列数
if rows < 10:
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 统计不同行为类型的数量
behavior_count = data['behavior_type'].value_counts()
print(behavior_count)

# 查看视频时长的分布情况
sns.histplot(data['video_duration'], kde=True)
plt.title('Distribution of Video Durations')
plt.xlabel('Video Duration (s)')
plt.ylabel('Count')
plt.show()

2.3 数据清洗

# 处理缺失值
data.dropna(subset=['user_id', 'video_id', 'behavior_type'], inplace=True)

# 去除重复记录
data = data.drop_duplicates()

# 对视频标签进行处理,将其拆分为多个标签
data['tags'] = data['video_tags'].str.split(',')

2.4 数据分析

2.4.1 用户行为偏好分析

# 统计不同视频标签下的行为数量
tag_behavior = data.explode('tags').groupby(['tags', 'behavior_type']).size().unstack(fill_value=0)

# 绘制热力图展示标签与行为的关系
plt.figure(figsize=(12, 8))
sns.heatmap(tag_behavior, cmap='YlGnBu')
plt.title('User Behavior Preferences by Video Tags')
plt.xlabel('Behavior Type')
plt.ylabel('Video Tags')
plt.show()
2.4.2 视频传播效果分析

# 计算每个视频的传播指数(点赞数 + 评论数 + 分享数)
data['spread_index'] = data.groupby('video_id')['behavior_type'].transform(lambda x: (x == 'like').sum() + (x == 'comment').sum() + (x == 'share').sum())

# 分析视频时长与传播指数的关系
plt.figure(figsize=(10, 6))
sns.scatterplot(x=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值