目录
一、案例背景
在移动互联网时代,短视频平台如抖音、快手等发展迅猛,成为人们获取信息、娱乐和社交的重要渠道。大量用户在平台上上传、观看、点赞、评论和分享短视频,形成了庞大而复杂的数据。对于短视频平台运营方、内容创作者和广告投放商来说,深入了解用户行为和内容传播规律至关重要。通过对短视频平台数据的分析,可以挖掘用户喜好,优化内容推荐算法,制定更有效的营销策略,提升平台的用户活跃度和商业价值。
二、代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
2.1 数据收集
假设从短视频平台的开放 API 获取了用户行为数据和视频内容数据,存储在short_video_data.csv
文件中,包含用户 ID、视频 ID、行为类型(观看、点赞、评论、分享)、视频标签、视频时长、发布时间等信息。
data = pd.read_csv('short_video_data.csv')
2.2 数据探索性分析
# 查看数据基本信息
print(data.info())
# 查看数据集行数和列数
rows, columns = data.shape
# 查看数据集行数和列数
if rows < 10:
print(data.to_csv(sep='\t', na_rep='nan'))
else:
print(data.head().to_csv(sep='\t', na_rep='nan'))
# 统计不同行为类型的数量
behavior_count = data['behavior_type'].value_counts()
print(behavior_count)
# 查看视频时长的分布情况
sns.histplot(data['video_duration'], kde=True)
plt.title('Distribution of Video Durations')
plt.xlabel('Video Duration (s)')
plt.ylabel('Count')
plt.show()
2.3 数据清洗
# 处理缺失值
data.dropna(subset=['user_id', 'video_id', 'behavior_type'], inplace=True)
# 去除重复记录
data = data.drop_duplicates()
# 对视频标签进行处理,将其拆分为多个标签
data['tags'] = data['video_tags'].str.split(',')
2.4 数据分析
2.4.1 用户行为偏好分析
# 统计不同视频标签下的行为数量
tag_behavior = data.explode('tags').groupby(['tags', 'behavior_type']).size().unstack(fill_value=0)
# 绘制热力图展示标签与行为的关系
plt.figure(figsize=(12, 8))
sns.heatmap(tag_behavior, cmap='YlGnBu')
plt.title('User Behavior Preferences by Video Tags')
plt.xlabel('Behavior Type')
plt.ylabel('Video Tags')
plt.show()
2.4.2 视频传播效果分析
# 计算每个视频的传播指数(点赞数 + 评论数 + 分享数)
data['spread_index'] = data.groupby('video_id')['behavior_type'].transform(lambda x: (x == 'like').sum() + (x == 'comment').sum() + (x == 'share').sum())
# 分析视频时长与传播指数的关系
plt.figure(figsize=(10, 6))
sns.scatterplot(x=