Python 数据分析实战:电商平台促销活动效果评估与用户购买行为洞察

目录

一、案例背景

二、代码实现

2.1 数据收集

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 促销活动对购买金额的影响分析

2.4.2 用户购买行为聚类分析

2.4.3 商品类别与购买行为关联分析

三、主要的代码难点解析

3.1 数据收集

3.2 数据清洗 - 缺失值处理

3.3 数据分析 - 聚类分析

3.4 数据分析 - 商品类别与购买行为关联分析

3.5 数据可视化

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进

4.4 特征工程改进

4.5 模型评估与调优改进


一、案例背景

在竞争激烈的电商市场中,促销活动是吸引用户、提升销售额的重要手段。然而,不同的促销策略对用户购买行为的影响各不相同,如何精准评估促销活动效果,洞察用户购买行为模式,成为电商平台运营者关注的焦点。通过对电商平台的交易数据、用户行为数据进行深入分析,可以为平台优化促销策略、提升用户体验、实现精准营销提供有力支持。

二、代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

2.1 数据收集

假设从电商平台数据库中获取了一段时间内的用户订单数据和用户行为数据,存储在ecommerce_data.csv文件中,包含用户 ID、订单 ID、购买时间、购买金额、商品类别、是否参与促销活动、用户浏览页面时长、用户购买前浏览商品数量等信息。

data = pd.read_csv('ecommerce_data.csv')

2.2 数据探索性分析

# 查看数据基本信息
print(data.info())

# 查看数据集行数和列数
rows, columns = data.shape

# 查看数据集行数和列数
if rows < 10:
    print(data.to_csv(sep='\t', na_rep='nan'))
else:
    print(data.head().to_csv(sep='\t', na_rep='nan'))

# 统计参与促销活动的订单数量
promotion_order_count = (data['is_promotion'] == 1).sum()
print(f"参与促销活动的订单数量: {promotion_order_count}")

# 查看购买金额的分布情况
sns.histplot(data['purchase_amount'], kde=True)
plt.title('Distribution of Purchase Amount')
plt.xlabel('Purchase Amount ($)')
plt.ylabel('Count')
plt.show()

2.3 数据清洗

# 处理缺失值
data.dropna(subset=['user_id', 'order_id', 'purchase_amount'], inplace=True)

# 去除重复订单记录
data = data.drop_duplicates(subset='order_id')

# 检查数据类型并进行必要转换
data['purchase_time'] = pd.to_datetime(data['purchase_time'])

2.4 数据分析

2.4.1 促销活动对购买金额的影响分析

# 对比参与促销活动和未参与促销活动的订单平均购买金额
promotion_mean_amount = data[data['is_promotion'] == 1]['purchase_amount'].mean()
non_promotion_mean_amount = data[data['is_promotion'] == 0]['purchase_amount'].mean()

print(f"参与促销活动的订单平均购买金额: ${promotion_mean_amount:.2f}")
print(f"未参与促销活动的订单平均购买金额: ${non_promotion_mean_amount:.2f}")

# 绘制箱线图对比两者购买金额分布
plt.figure(figsize=(10, 6))
sns.boxplot(x='is_promotion', y='purchase_amount', data=data)
plt.title('Comparison of Purchase Amount between Promotion and Non - Promotion Orders')
plt.xlabel('Is Promotion')
plt.xticks(ticks=[0, 1], labels=['No', 'Yes'])
plt.ylabel('Purchase Amount ($)')
plt.show()
2.4.2 用户购买行为聚类分析

# 提取用于聚类的特征
features = data[['purchase_amount', 'browse_duration', 'browse_product_count']]

# 数据标准化
scaler = StandardScale
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值