目录
一、案例背景
在全球化进程加速和互联网技术普及的大背景下,跨境电商行业蓬勃发展,成为推动国际贸易增长的重要力量。它打破了地域限制,使消费者能够轻松购买来自世界各地的商品,同时也为企业开拓了广阔的国际市场。然而,行业发展中面临着复杂的贸易政策、激烈的市场竞争以及物流配送等挑战。通过 Python 对跨境电商行业相关数据进行深入分析,能够帮助企业了解市场动态、把握消费者需求、优化供应链管理,从而在跨境电商领域取得竞争优势。
二、代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import requests
from bs4 import BeautifulSoup
2.1 数据收集
数据来源广泛,包括行业研究报告网站(如艾瑞咨询、Statista)、跨境电商平台交易数据、海关进出口统计数据以及社交媒体上的用户讨论。
- 从艾瑞咨询网站抓取跨境电商市场规模数据:
url = 'https://www.iresearch.com.cn/report/cross_border_ecommerce.html'
headers = {
'User - Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers = headers)
soup = BeautifulSoup(response.text, 'html.parser')
market_size_data = []
div = soup.find('div', class_='market - size - content')
items = div.find_all('li')
for item in items:
year = item.find('span', class_='year - info').text.strip()
market_size = float(item.find('span', class_='size - value').text.strip().replace('万亿元', ''))
market_size_data.append({'Year': year, 'Market_Size': market_size})
market_size_df = pd.DataFrame(market_size_data)
- 从跨境电商平台 API 获取商品销售数据(假设已申请到合法接口权限):
import json
api_url = 'https://api.crossborderplatform.com/sales'
headers = {
'Authorization': 'your_api_key',
'Content - Type': 'application/json'
}
response = requests.get(api_url, headers = headers)
if response.status_code == 200:
sales_data = json.loads(response.text)
sales_df = pd.DataFrame(sales_data)
else:
print('Failed to get sales data')
2.2 数据探索性分析
# 查看市场规模数据基本信息
print(market_size_df.info())
# 查看销售数据基本信息
print(sales_df.info())
# 分析跨境电商市场规模随时间变化趋势
market_size_df['Year'] = pd.to_numeric(market_size_df['Year'])
plt.figure(figsize=(12, 6))
sns.lineplot(x='Year', y='Market_Size', data=market_size_df)
plt.title('Trend of Cross - Border E - commerce Market Size')
plt.xlabel('Year')
plt.ylabel('Market Size (trillion yuan)')
plt.show()
# 查看不同品类商品在跨境电商平台的销售数量分布
category_count = sales_df['Product_Category'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=category_count.index, y=category_count.values)
plt.title('Distribution of Cross - Border E - commerce Product Sales by Category')
plt.xlabel('Product Category')
plt.ylabel('Sales Count')
plt.xticks(rotation=45)
plt.show()
2.3 数据清洗
# 市场规模数据清洗
# 检查并处理缺失值
market_size_df.dropna(inplace = True)
# 去除重复记录
market_size_df = market_size_df.drop_duplicates()
# 销售数据清洗
# 处理异常销售数据,如销售数量为负数、价格不合理等
sales_df = sales_df[(sales_df['Sales_Volume'] > 0) & (sales_df['Price'] > 0)]