Python 数据分析实战:跨境电商行业发展解析

目录

一、案例背景

二、代码实现

2.1 数据收集

2.2 数据探索性分析

2.3 数据清洗

2.4 数据分析

2.4.1 跨境电商消费者地域分布分析

2.4.2 跨境电商商品销售与价格关系分析

2.4.3 跨境电商行业未来发展预测

三、主要的代码难点解析

3.1 数据收集

3.2 数据清洗 - 销售数据处理

3.3 数据分析 - 跨境电商消费者地域分布分析

3.4 数据分析 - 跨境电商商品销售与价格关系分析

3.5 数据可视化

四、可能改进的代码

4.1 数据收集改进

4.2 数据清洗改进

4.3 数据分析改进


一、案例背景

在全球化进程加速和互联网技术普及的大背景下,跨境电商行业蓬勃发展,成为推动国际贸易增长的重要力量。它打破了地域限制,使消费者能够轻松购买来自世界各地的商品,同时也为企业开拓了广阔的国际市场。然而,行业发展中面临着复杂的贸易政策、激烈的市场竞争以及物流配送等挑战。通过 Python 对跨境电商行业相关数据进行深入分析,能够帮助企业了解市场动态、把握消费者需求、优化供应链管理,从而在跨境电商领域取得竞争优势。

二、代码实现

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import requests
from bs4 import BeautifulSoup

2.1 数据收集

数据来源广泛,包括行业研究报告网站(如艾瑞咨询、Statista)、跨境电商平台交易数据、海关进出口统计数据以及社交媒体上的用户讨论。

  • 从艾瑞咨询网站抓取跨境电商市场规模数据:

url = 'https://www.iresearch.com.cn/report/cross_border_ecommerce.html'
headers = {
    'User - Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers = headers)
soup = BeautifulSoup(response.text, 'html.parser')
market_size_data = []
div = soup.find('div', class_='market - size - content')
items = div.find_all('li')
for item in items:
    year = item.find('span', class_='year - info').text.strip()
    market_size = float(item.find('span', class_='size - value').text.strip().replace('万亿元', ''))
    market_size_data.append({'Year': year, 'Market_Size': market_size})
market_size_df = pd.DataFrame(market_size_data)

  • 从跨境电商平台 API 获取商品销售数据(假设已申请到合法接口权限):
import json
api_url = 'https://api.crossborderplatform.com/sales'
headers = {
    'Authorization': 'your_api_key',
    'Content - Type': 'application/json'
}
response = requests.get(api_url, headers = headers)
if response.status_code == 200:
    sales_data = json.loads(response.text)
    sales_df = pd.DataFrame(sales_data)
else:
    print('Failed to get sales data')

2.2 数据探索性分析

# 查看市场规模数据基本信息
print(market_size_df.info())
# 查看销售数据基本信息
print(sales_df.info())

# 分析跨境电商市场规模随时间变化趋势
market_size_df['Year'] = pd.to_numeric(market_size_df['Year'])
plt.figure(figsize=(12, 6))
sns.lineplot(x='Year', y='Market_Size', data=market_size_df)
plt.title('Trend of Cross - Border E - commerce Market Size')
plt.xlabel('Year')
plt.ylabel('Market Size (trillion yuan)')
plt.show()

# 查看不同品类商品在跨境电商平台的销售数量分布
category_count = sales_df['Product_Category'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=category_count.index, y=category_count.values)
plt.title('Distribution of Cross - Border E - commerce Product Sales by Category')
plt.xlabel('Product Category')
plt.ylabel('Sales Count')
plt.xticks(rotation=45)
plt.show()

2.3 数据清洗

# 市场规模数据清洗
# 检查并处理缺失值
market_size_df.dropna(inplace = True)
# 去除重复记录
market_size_df = market_size_df.drop_duplicates()

# 销售数据清洗
# 处理异常销售数据,如销售数量为负数、价格不合理等
sales_df = sales_df[(sales_df['Sales_Volume'] > 0) & (sales_df['Price'] > 0)]

2.4 数据分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萧十一郎@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值