机器学习ML
darren2015zdc
这个作者很懒,什么都没留下…
展开
-
xgboost 在windows的环境的安装
参考:http://blog.csdn.net/fyjthcy/article/details/505627561. github下载地址: https://github.com/dmlc/xgboost/releases,用的最新版本0.4x2. 下载成功后,打开xgboost-0.47源文件夹下的windows文件夹,打开里面的vs工程。编译生成xgboost.exe(用于CLI)以及原创 2017-01-15 16:57:19 · 354 阅读 · 0 评论 -
2017年10月历史文章汇总
2017年10月历史文章汇总2017-11-01 机器学习研究会 机器学习研究会25610017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月历史文章汇总2017年6月历史文章汇总2017年7月历史文章汇总2017年8月历史文章汇总20转载 2017-12-04 11:28:17 · 437 阅读 · 0 评论 -
2017年9月历史文章汇总
2017年9月历史文章汇总2017-10-01 机器学习研究会 机器学习研究会2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月历史文章汇总2017年6月历史文章汇总2017年7月历史文章汇总2017年8月历史文章汇总2017年9月转载 2017-12-04 11:27:41 · 457 阅读 · 0 评论 -
2017年8月历史文章汇总
2017年8月历史文章汇总2017-09-01 机器学习研究会 机器学习研究会2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月历史文章汇总2017年6月历史文章汇总2017年7月历史文章汇总2017年8月1日【推荐】哈佛大学蒙特卡洛方转载 2017-12-04 11:27:06 · 386 阅读 · 0 评论 -
2017年7月历史文章汇总
2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月历史文章汇总2017年6月历史文章汇总2017年7月1日【推荐】MIT发布ADE20K场景感知/解析/分割/多目标识别数据集【学习】卷积优化-Cpython(Cuda)施工和分析【数据集】转载 2017-07-15 06:51:20 · 447 阅读 · 0 评论 -
2017年6月历史文章汇总
2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月历史文章汇总2017年6月1日【推荐】特征降维算法:优势与不足【论文】CVPR 2017论文:视觉跟踪技术,基于深度强化学习的行动决策网络(附代码和数据)【干货】深度学习在推荐领域的应用转载 2017-07-15 06:50:04 · 413 阅读 · 0 评论 -
2017年5月历史文章汇总
2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月1日【预告】北大AI第十讲:科大讯飞联合创始人 胡郁——人工智能技术及产业最新进展2017年5月2日【推荐】对抗生成网络(Gan)深入研究(文献/教程/模型/框架/库等)【学习】Reinforcem转载 2017-07-15 06:49:11 · 655 阅读 · 0 评论 -
2017年4月历史文章汇总
2017年4月历史文章汇总2017-04-28 机器学习研究会 机器学习研究会2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月1日【推荐】Faster R-CNN视频目标检测【学习】大白话解释模型产生过拟合的原因【学习】深度学习中的基础线性代数-初学者指南转载 2017-05-31 22:21:26 · 577 阅读 · 0 评论 -
2017年3月历史文章汇总
2017年3月历史文章汇总原创 2017-04-01 机器学习研究会 机器学习研究会2017年1月历史文章汇总2017年2月历史文章汇总2017年3月1日【推荐】从零开始学习无人驾驶技术 --- 车道检测【学习】Kaggle老手领你入门梯度提升——梯度提升两三事【论文】用对抗网络检测恶性前列腺癌【学习】Ne转载 2017-05-31 22:20:16 · 793 阅读 · 0 评论 -
2017年2月历史文章汇总
2017年2月历史文章汇总原创 2017-03-01 机器学习研究会 机器学习研究会2017年1月历史文章汇总2017年2月1日【推荐】利用深度学习的人脸检测方法:改进的Faster RCNN【学习】Pandas 秘籍【学习】利用python爬取人人贷网的数据【学习】人工智能自学心得2017年2月2日转载 2017-05-31 22:19:36 · 566 阅读 · 0 评论 -
2017年1月历史文章汇总
2017年1月历史文章汇总原创 2017-02-01 机器学习研究会 机器学习研究会2017年1月1日【推荐】Pandas数据处置速查表【学习】决策树在商品购买能力预测案例中的算法实现【学习】变の贝叶斯【学习】Intel 收官开源之作--BigDL:构建在 Apache Spark 之上的分布式深度学习库2017年1月转载 2017-05-31 22:18:28 · 661 阅读 · 0 评论 -
快速选择合适的机器学习算法
原文链接:https://yq.aliyun.com/articles/86632SAS® Visual Data Mining and Machine Learning链接:https://support.sas.com/documentation/prod-p/vdmml/index.html?spm=5176.100239.blogcont86632.转载 2017-05-31 21:11:00 · 585 阅读 · 0 评论 -
机器学习与人工智能资源,等待更新
机器学习与人工智能技术分享(未完待续)https://www.zybuluo.com/vivounicorn/note/446479#516-原创 2017-05-31 21:00:01 · 389 阅读 · 0 评论 -
机器学习资源整理
CS 229 Machine Learning Course Materials http://cs229.stanford.edu/materials.htmlCS229 Machine Learning Autumn 2016 http://cs229.stanford.edu/原创 2017-05-23 23:12:42 · 336 阅读 · 0 评论 -
机器学习:梯度下降法的三种形式BGD、SGD以及MBGD
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为: hθ=∑nj=0θjxjh_{\theta}=\sum_{j=0}^{n}\theta_{j}x_{j} 对应的能量函数(损失函数)形式为: Jtrain(θ)原创 2017-05-23 22:41:11 · 680 阅读 · 0 评论 -
2017年11月历史文章汇总
2017年11月历史文章汇总2017-12-01 机器学习研究会 机器学习研究会2017年1月历史文章汇总2017年2月历史文章汇总2017年3月历史文章汇总2017年4月历史文章汇总2017年5月历史文章汇总2017年6月历史文章汇总2017年7月历史文章汇总2017年8月历史文章汇总2017年9转载 2017-12-04 11:29:07 · 428 阅读 · 0 评论