GPU
DarrenXf
这个作者很懒,什么都没留下…
展开
-
Ubuntu 16.04 下查看gpu的运行情况
$ nvidia-smiFri Aug 31 14:49:38 2018 +-----------------------------------------------------------------------------+| NVIDIA-SMI 384.130 Driver Version: 384.130 ...原创 2018-08-31 14:53:21 · 6047 阅读 · 3 评论 -
tensorflow 1.8 测试gpu代码
查看日志信息若包含gpu信息,就是使用了gpu。 下面的代码查看日志信息,如果包含gpu信息就是使用了gpuimport tensorflow as tfsess = tf.Session(config=tf.ConfigProto(log_device_placement=True))输出2018-08-30 13:06:50.335491: I tensorflow/c...原创 2018-08-30 13:11:15 · 3107 阅读 · 0 评论 -
测试minpy 调用gpu 加速numpy的矩阵相乘. 小矩阵相乘 1到100万个元 多次
测试minpy 调用gpu加速numpy的矩阵相乘.小矩阵相乘,前面的文章中已经看到行数超过1000的方阵,基本上gpu就能起到加速效果.我们现在想知道的是具体的minpy 和numpy 性能的拐点.以此帮助我们决定使用cpu还是gpu. 具体结果测试应该是根据机器所不同的,我们这里的结果只是我们测试机的的结果.上一篇测试的时候只是测试了运行一次的时间,矩阵比较小时,测试到的运行时间误差比较大,...原创 2019-01-10 13:56:43 · 1778 阅读 · 0 评论 -
测试minpy 调用gpu 加速矩阵相乘. accelerate matrix multiplication
测试minpy 调用gpu加速矩阵相乘,已经写了几篇文章.前几篇文章得到的结果不太好,主要原因是跟想象中的结果并不是很相同.主要有两点,一个是前几篇测试加速的效果并不是很好,矩阵要很大的时候才能看到明显的加速.另一个是我一个先验的经验认为float32的加速效果要明显比float64的加速效果要好很多. 但是这两点在前面的测试中并没有得到.这个就能感受到理论跟实验之间差距.如果你相信理论,相信...原创 2019-01-11 16:15:41 · 1375 阅读 · 0 评论 -
测试pytorch 调用gpu 加速矩阵相乘. accelerate matrix multiplication
下面是我机器中的cpu和gpu型号31.4 GiBIntel® Core™ i7-8700K CPU @ 3.70GHz × 12 GeForce GTX 1080 Ti/PCIe/SSE264-bit代码会在下面给出先看下整体的输出效果 对比了float32 float64 分别用numpy,torch cpu 以及torch gpu 运算矩阵相乘运行1000次 方阵大小1-50...原创 2019-01-24 16:38:52 · 6421 阅读 · 5 评论