homework5_ZhankunLuo

Zhankun Luo

PUID: 0031195279

Email: luo333@pnw.edu

Fall-2018-ECE-59500-009

Instructor: Toma Hentea

Homework 5

Function

plot_point.m

function plot_point(X,y)
%this function can handle up to 6 different classes
[l,N]=size(X); %N=no. of data vectors, l=dimensionality
if(l~=2)
    fprintf('NO PLOT CAN BE GENERATED\n')
    return
else
    pale=['ro';'g+';'b.';'y.';'m.';'c.']; 
    %Plot of the data vectors
    hold on
    for i=1:N
       plot(X(1,i),X(2,i),pale(y(i),:))
    end    
    hold off
end

Calc_SwSbSm.m

function [ S_w, S_b, S_m ] = Calc_SwSbSm( X, y )
% [ S_w, S_b, S_m ] = Calc_SwSbSm( X, y )
%   Calculate S_w, S_b, S_m
% OUTPUT:
%   S_w: the within-class
%   S_b: the between-class
%   S_m: the mixture Sm = Sw + Sb
c = max(y); % number of classes
[l, N] = size(X); % N: number of vectors, l: dimensions
mu = zeros(l, c);
S_w = zeros(l, l); S_b = zeros(l, l); mu_0 = zeros(l, 1);
P = zeros(1, c);
for i = 1:c
    index_class_i = find(y == i);
    Mu = sum(X(:, index_class_i), 2) / length(index_class_i);
    mu(:, i) = Mu; mu_0 = mu_0 + sum(X(:, index_class_i), 2) / N;
    P(i) = length(index_class_i) / N;
    X_relative = X(:, index_class_i) - repmat(Mu, 1, length(index_class_i));
    S_wi = zeros(l, l);
    for j = 1:length(index_class_i)
        S_wi = S_wi + X_relative(:, j) * X_relative(:, j)';
    end
    S_w = S_w + S_wi / N;    
end
for i = 1:c
    S_b = S_b + P(i) * (mu(:, i) - mu_0) * (mu(:, i) - mu_0)';
end
S_m = S_w + S_b;

J3.m

function J3 = J3(S_w, S_m)
J3 = trace(S_w \ S_m);
end

FDR.m

function [ FDR, w ] = FDR( X, y , D_y)
%function [ FDR, w ] = FDR( X, y , D_y)
% Fisher's Discriminant Ratio  
% INPUT: 
%   X: points
%   y: y==i ==> belong to Class i
%   D_y: dimension of w, how many features Z_i = w_i'* X need to classify
% OUTPUT:
%   FDR: trace((w * S_w * w') \ (w * S_b * w'))
%   w: use w ==> make Z = w'* X => calculate tr(S_w \ S_b) of Z
%      <=> maximize FDR of X
[ S_w, S_b, S_m ] = Calc_SwSbSm( X, y );
[ Vector, Diag ] = eig( S_w \ S_b );
vector = fliplr(Vector); % make highest eig show first
w = vector(:, 1:D_y); % select D_y vectors corresponding to D_y highest eig values
FDR = trace((w'* S_w * w) \ (w'* S_b * w));
end

Problem

Problem 5.1

Both classes, ω 1 \omega_1 ω1 , ω 2 \omega_2 ω2 , are described by Gaussian distributions of
the same covariance matrix Σ = I \Sigma = I Σ=I , where I I I is the identity matrix and mean values
μ \mu μ and − μ - \mu μ, respectively, where:
μ = [ μ 1 , . . . , μ l ] T = [ 1 , 1 2 , . . . , 1 l ] T b l = ∥ μ ∥ = ∑ i = 1 l μ i 2 \mu = [\mu_1, ..., \mu_l]^T = [1, \frac{1}{\sqrt{2}}, ... , \frac{1}{\sqrt{l}}]^T\\ b_l = \lVert \mu \rVert = \sqrt{\sum_{i=1}^{l}{\mu_i^2}} μ=[μ1,...,μl]T=[1,2 1,...,l 1]Tbl=μ=i=1lμi2
Define:
z ≡ x T μ , w h e r e   x = [ x 1 , . . . , x l ] T z \equiv x^T\mu, where \ x = [x_1, ..., x_l]^T zxTμ,where x=[x1,...,xl]T

Proof of E [ z ] = ∥ μ ∥ 2 E[z] = \lVert \mu \rVert^2 E[z]=μ2

F o r   x ∈ ω 1 : E [ z ] = E [ x T μ ] = E [ x T ] μ = μ T μ = ∥ μ ∥ 2 F o r   x ∈ ω 2 : E [ z ] = E [ x T μ ] = E [ x T ] μ = − μ T μ = − ∥ μ ∥ 2 For \ x \in \omega_1: E[z] = E[x^T\mu] = E[x^T]\mu = \mu^T\mu = \lVert \mu \rVert^2\\ For \ x \in \omega_2: E[z] = E[x^T\mu] = E[x^T]\mu = - \mu^T\mu = - \lVert \mu \rVert^2 For xω1:E[z]=E[xTμ]=E[xT]μ=μTμ=μ2For xω2:E[z]=E[xTμ]=E[xT]μ=μTμ=μ2

Proof of σ z 2 = ∥ μ ∥ 2 l \sigma_{z}^2 = \lVert \mu \rVert^2 l σz2=μ2l

F o r   x ∈ ω 1 : For \ x \in \omega_1: For xω1:
σ z 2 = E [ ( x − μ ) 2 ∥ μ ∥ 2 ] = ∥ μ ∥ 2 ∭ − ∞ ∞ ( x − μ ) 2 1 ( 2 π ) l 2 Σ 1 2 e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) d x = ∥ μ ∥ 2 ∭ − ∞ ∞ ∑ i = 1 l ( x i − μ i ) 2 1 ( 2 π ) l 2 e x p ( − 1 2 ∑ j = 1 l ( x j − μ j ) 2 ) d x = ∥ μ ∥ 2 ∑ i = 1 l ∭ − ∞ ∞ ( x i − μ i ) 2 1 ( 2 π ) l 2 e x p ( − 1 2 ∑ j = 1 l ( x j − μ j ) 2 ) d x 1 . . . d x l = ∥ μ ∥ 2 ∑ i = 1 l ∫ − ∞ ∞ ( x i − μ i ) 2 1 ( 2 π ) 1 2 e x p ( − 1 2 ( x i − μ i ) 2 ) d x i ∏ j ≠ i , j = 1 l ∫ − ∞ + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 ( x j − μ j ) 2 ) d x j = ∥ μ ∥ 2 ∑ i = 1 l 1 ⋅ 1 ( l − 1 ) = ∥ μ ∥ 2 l \sigma_{z}^2 = E[(x-\mu)^2\lVert \mu \rVert^2]\\ = \lVert \mu \rVert^2\iiint_{-\infty}^{\infty}(x-\mu)^2 \frac{1}{(2\pi)^{\frac{l}{2}}\Sigma^{\frac{1}{2}}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)) dx\\ =\lVert \mu \rVert^2 \iiint_{-\infty}^{\infty}\sum_{i=1}^{l}(x_i-\mu_i)^2 \frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}\sum_{j=1}^{l}(x_j-\mu_j)^2) dx\\ =\lVert \mu \rVert^2 \sum_{i=1}^{l} \iiint_{-\infty}^{\infty}(x_i-\mu_i)^2 \frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}\sum_{j=1}^{l}(x_j-\mu_j)^2) dx_1...dx_l\\ =\lVert \mu \rVert^2 \sum_{i=1}^{l} \int_{-\infty}^{\infty}(x_i-\mu_i)^2 \frac{1}{(2\pi)^{\frac{1}{2}}} exp(-\frac{1}{2}(x_i-\mu_i)^2) dx_i \prod_{j\neq i, j =1}^{l}\int_{-\infty}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}(x_j-\mu_j)^2)dx_j\\ =\lVert \mu \rVert^2 \sum_{i=1}^{l} 1\cdot 1^{(l-1)}\\ =\lVert \mu \rVert^2 l σz2=E[(xμ)2μ2]=μ2(xμ)2(2π)2lΣ211exp(21(xμ)TΣ1(xμ))dx=μ2i=1l(xiμi)2(2π)2l1exp(21j=1l(xjμj)2)dx=μ2i=1l(xiμi)2(2π)2l1exp(21j=1l(xjμj)2)dx1...dxl=μ2i=1l(xiμi)2(2π)211exp(21(xiμi)2)dxij̸=i,j=1l+(2π)211exp(21(xjμj)2)dxj=μ2i=1l11(l1)=μ2l
F o r   x ∈ ω 2 : For \ x \in \omega_2: For xω2:
σ z 2 = E [ ( x + μ ) 2 ∥ μ ∥ 2 ] = ∥ μ ∥ 2 l \sigma_{z}^2 = E[(x+\mu)^2\lVert \mu \rVert^2] = \lVert \mu \rVert^2 l σz2=E[(x+μ)2μ2]=μ2l

Proof of the probability of error P e P_e Pe
Gram–Schmidt process

Set:
α 1 = μ , α 2 = [ 0 , 1 , 0 , . . . , 0 ] T , α 3 = [ 0 , 0 , 1 , 0 , . . . , 0 ] T , α l = [ 0 , . . . , 0 , 1 ] T T h e s e   v e c t o r s   a r e   L i n e a r l y   I n d e p e n d e n t \alpha_1 = \mu,\alpha_2 = [0, 1, 0, ..., 0]^T, \alpha_3 = [0, 0, 1, 0, ..., 0]^T, \alpha_l = [0,..., 0, 1]^T\\ These \ vectors \ are \ Linearly \ Independent α1=μ,α2=[0,1,0,...,0]T,α3=[0,0,1,0,...,0]T,αl=[0,...,0,1]TThese vectors are Linearly Independent
Then:
β 1 = α 1 = μ β 2 = α 1 − &lt; α 2 , β 1 &gt; &lt; β 1 , β 1 &gt; β 1 . . . β i = α i − &lt; α i , β 1 &gt; &lt; β 1 , β 1 &gt; β 1 − . . . − &lt; α i , β i − 1 &gt; &lt; β i − 1 , β i − 1 &gt; β i − 1    ( i = 2 , . . . l ) \beta_1 = \alpha_1 = \mu\\ \beta_2 = \alpha_1- \frac{&lt;\alpha_2, \beta_1&gt;}{&lt;\beta_1, \beta_1&gt;}\beta_1\\ ...\\ \beta_i = \alpha_i- \frac{&lt;\alpha_i, \beta_1&gt;}{&lt;\beta_1, \beta_1&gt;}\beta_1-...-\frac{&lt;\alpha_i, \beta_{i-1}&gt;}{&lt;\beta_{i-1}, \beta_{i-1}&gt;}\beta_{i-1} \ \ (i =2,...l) β1=α1=μβ2=α1<β1,β1><α2,β1>β1...βi=αi<β1,β1><αi,β1>β1...<βi1,βi1><αi,βi1>βi1  (i=2,...l)
Normalize:
e 1 = β 1 ∥ μ ∥ = μ b l e i = β i ∥ β i ∥    ( i = 1 , . . . , l ) e_1 = \frac{\beta_1}{\lVert \mu \rVert}= \frac{\mu}{b_l}\\ e_i = \frac{\beta_i}{\lVert \beta_i \rVert}\ \ (i =1,...,l) e1=μβ1=blμei=βiβi  (i=1,...,l)

Preparing work

Set:
P = [ e 1 , . . . , e l ] T &lt; e i , e j &gt; = { 0 i f i ≠ j 1 i f i = j P P T = [ e 1 , . . . , e l ] T [ e 1 , . . . , e l ] = I l P   i s   a n   o r t h o g o n a l   m a t r i x , P − 1 = P T , P T P = I l , ∣ d e t ( P ) ∣ = 1 P = [e_1, ..., e_l]^T\\ &lt;e_i, e_j&gt; = \left\{ \begin{array}{lcl} 0\quad &amp;if \quad i\neq j \\ 1\quad &amp;if \quad i=j \end{array} \right. \\ PP^T= [e_1, ..., e_l]^T [e_1, ..., e_l] = I_l\\ P \ is \ an \ orthogonal \ matrix, P^{-1}=P^T, P^TP=I_l, |det(P)| =1 \\ P=[e1,...,el]T<ei,ej>={01ifi̸=jifi=jPPT=[e1,...,el]T[e1,...,el]=IlP is an orthogonal matrix,P1=PT,PTP=Il,det(P)=1
Apply P to ( x − μ ) (x-\mu) (xμ)
P ( x − μ ) = [ e 1 , e 2 , . . . , e l ] T ( x − μ ) = [ e 1 T x , . . . , e l T x ] T − [ b l , 0 , . . . , 0 ] T b e c a u s e , e i T μ = e i T ( b l e 1 ) = { 0 i f i ≠ 1 b l i f i = 1 d e f i n e y = [ y 1 , . . . , y l ] T ≡ [ e 1 T x , . . . , e l T x ] T t h u s P ( x − μ ) = [ y 1 − b l , y 2 , . . . , y l ] T P(x-\mu) = [e_1, e_2, ..., e_l]^T (x-\mu) = [e_1^Tx, ..., e_l^Tx]^T - [b_l, 0, ..., 0]^T\\ because, \quad e_i^T\mu = e_i^T(b_l e_1)= \left\{ \begin{array}{lcl} 0\quad &amp;if \quad i\neq 1 \\ b_l\quad &amp;if \quad i=1 \end{array} \right. \\ define \quad y = [y_1, ..., y_l]^T \equiv [e_1^Tx, ..., e_l^Tx]^T\\ thus \quad P(x-\mu) = [y_1 - b_l, y_2, ..., y_l]^T P(xμ)=[e1,e2,...,el]T(xμ)=[e1Tx,...,elTx]T[bl,0,...,0]Tbecause,eiTμ=eiT(ble1)={0blifi̸=1ifi=1definey=[y1,...,yl]T[e1Tx,...,elTx]TthusP(xμ)=[y1bl,y2,...,yl]T

Calculate Probability

The probability density function for ( x 1 , . . . , x l ) (x_1, ..., x_l) (x1,...,xl) is given by, ( Σ = I l \Sigma=I_l Σ=Il):

class ω 1 \omega_1 ω1:
p ( x ; μ , Σ ) = 1 ( 2 π ) l 2 Σ 1 2 e x p ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) = 1 ( 2 π ) l 2 e x p ( − 1 2 ( x − μ ) T ( x − μ ) ) = 1 ( 2 π ) l 2 e x p ( − 1 2 ( x − μ ) T P T P ( x − μ ) ) = 1 ( 2 π ) l 2 e x p ( − 1 2 [ y 1 − b l , y 2 , . . . , y l ] [ y 1 − b l , y 2 , . . . , y l ] T ) = 1 ( 2 π ) l 2 e x p ( − 1 2 [ ( y 1 − b l ) 2 + ∑ i = 2 l y i 2 ] ) p(x; \mu, \Sigma)=\frac{1}{(2\pi)^{\frac{l}{2}}\Sigma^{\frac{1}{2}}} exp(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))\\ =\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}(x-\mu)^T (x-\mu))\\ =\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}(x-\mu)^TP^TP (x-\mu))\\ =\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}[y_1 - b_l, y_2, ..., y_l][y_1 - b_l, y_2, ..., y_l]^T)\\ =\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}[(y_1 - b_l)^2+\sum_{i=2}^{l}y_i^2])\\ p(x;μ,Σ)=(2π)2lΣ211exp(21(xμ)TΣ1(xμ))=(2π)2l1exp(21(xμ)T(xμ))=(2π)2l1exp(21(xμ)TPTP(xμ))=(2π)2l1exp(21[y1bl,y2,...,yl][y1bl,y2,...,yl]T)=(2π)2l1exp(21[(y1bl)2+i=2lyi2])
class ω 2 \omega_2 ω2:
p ( x ; − μ , Σ ) = 1 ( 2 π ) l 2 Σ 1 2 e x p ( − 1 2 ( x + μ ) T Σ − 1 ( x + μ ) ) = 1 ( 2 π ) l 2 e x p ( − 1 2 ( x + μ ) T ( x + μ ) ) = 1 ( 2 π ) l 2 e x p ( − 1 2 [ ( y 1 + b l ) 2 + ∑ i = 2 l y i 2 ] ) p(x; -\mu, \Sigma)=\frac{1}{(2\pi)^{\frac{l}{2}}\Sigma^{\frac{1}{2}}} exp(-\frac{1}{2}(x+\mu)^T \Sigma^{-1}(x+\mu))\\ =\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}(x+\mu)^T (x+\mu))\\ =\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}[(y_1 + b_l)^2+\sum_{i=2}^{l}y_i^2])\\ p(x;μ,Σ)=(2π)2lΣ211exp(21(x+μ)TΣ1(x+μ))=(2π)2l1exp(21(x+μ)T(x+μ))=(2π)2l1exp(21[(y1+bl)2+i=2lyi2])
Because:
d y = P d x P − 1 d y = P T d y = d x ∣ d e t ( P T ) ∣ d y 1 . . . d y l = d y 1 . . . d y l = d x 1 . . . d x l dy = Pdx\\ P^{-1}dy = P^Tdy =dx\\ |det(P^T)|dy_1...dy_l = dy_1...dy_l = dx_1...dx_l\\ dy=PdxP1dy=PTdy=dxdet(PT)dy1...dyl=dy1...dyl=dx1...dxl
Then:

For class ω 1 \omega_1 ω1:
P ( z = x T μ &lt; 0 ∣ ω 1 ) = P ( z = x T μ = x T b l e 1 = b l y 1 &lt; 0 ∣ ω 1 ) = P ( y 1 &lt; 0 ∣ ω 1 ) = ∭ y 1 &lt; 0 p ( x ; μ , Σ ) d x 1 . . . d x l = ∭ y 1 &lt; 0 1 ( 2 π ) l 2 e x p ( − 1 2 [ ( y 1 − b l ) 2 + ∑ i = 2 l y i 2 ] ) d y 1 . . . d y l = ∫ − ∞ 0 1 ( 2 π ) 1 2 e x p ( − 1 2 ( y 1 − b l ) 2 ) d y 1 ∏ i = 2 l ∫ − ∞ + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 y i 2 ) d y i = ∫ − ∞ 0 1 ( 2 π ) 1 2 e x p ( − 1 2 ( y 1 − b l ) 2 ) d y 1 = ∫ − ∞ − b l 1 ( 2 π ) 1 2 e x p ( − 1 2 Z 2 ) d Z = ∫ b l + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 Z 2 ) d Z P(z=x^T\mu&lt;0|\omega_1) \\ = P(z=x^T\mu=x^Tb_l e_1=b_ly_1&lt;0|\omega_1) =P(y_1&lt;0|\omega_1)\\ = \iiint_{y_1&lt;0}p(x; \mu, \Sigma)dx_1...dx_l\\ = \iiint_{y_1&lt;0}\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}[(y_1 - b_l)^2+\sum_{i=2}^{l}y_i^2])dy_1...dy_l\\ = \int_{-\infty}^{0}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}(y_1 - b_l)^2)dy_1 \prod^{l}_{i=2}\int_{-\infty}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}y_i^2)dy_i\\ = \int_{-\infty}^{0}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}(y_1 - b_l)^2)dy_1\\ = \int_{-\infty}^{-b_l}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}Z^2)dZ\\ = \int_{b_l}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}Z^2)dZ\\ P(z=xTμ<0ω1)=P(z=xTμ=xTble1=bly1<0ω1)=P(y1<0ω1)=y1<0p(x;μ,Σ)dx1...dxl=y1<0(2π)2l1exp(21[(y1bl)2+i=2lyi2])dy1...dyl=0(2π)211exp(21(y1bl)2)dy1i=2l+(2π)211exp(21yi2)dyi=0(2π)211exp(21(y1bl)2)dy1=bl(2π)211exp(21Z2)dZ=bl+(2π)211exp(21Z2)dZ
For class ω 2 \omega_2 ω2:
P ( z = x T μ &gt; 0 ∣ ω 2 ) = P ( y 1 &gt; 0 ∣ ω 2 ) = ∭ y 1 &gt; 0 1 ( 2 π ) l 2 e x p ( − 1 2 [ ( y 1 + b l ) 2 + ∑ i = 2 l y i 2 ] ) d y 1 . . . d y l = ∫ 0 + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 ( y 1 + b l ) 2 ) d y 1 = ∫ b l + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 Z 2 ) d Z P(z=x^T\mu&gt;0|\omega_2)\\ = P(y_1&gt;0|\omega_2)\\ = \iiint_{y_1&gt;0}\frac{1}{(2\pi)^{\frac{l}{2}}} exp(-\frac{1}{2}[(y_1 + b_l)^2+\sum_{i=2}^{l}y_i^2])dy_1...dy_l\\ = \int_{0}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}(y_1 + b_l)^2)dy_1\\ = \int_{b_l}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}Z^2)dZ\\ P(z=xTμ>0ω2)=P(y1>0ω2)=y1>0(2π)2l1exp(21[(y1+bl)2+i=2lyi2])dy1...dyl=0+(2π)211exp(21(y1+bl)2)dy1=bl+(2π)211exp(21Z2)dZ

Calculate P e P_e Pe

We have P ( ω 1 ) = 1 2 , P ( ω 2 ) = 1 2 P(\omega_1) = \frac{1}{2}, P(\omega_2)=\frac{1}{2} P(ω1)=21,P(ω2)=21:
P e = P ( ω 1 ) P ( z = x T μ &lt; 0 ∣ ω 1 ) + P ( ω 2 ) P ( z = x T μ &gt; 0 ∣ ω 2 ) = 1 2 ∫ b l + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 Z 2 ) d Z + 1 2 ∫ b l + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 Z 2 ) d Z = ∫ b l + ∞ 1 ( 2 π ) 1 2 e x p ( − 1 2 Z 2 ) d Z P_e = P(\omega_1)P(z=x^T\mu&lt;0|\omega_1) + P(\omega_2)P(z=x^T\mu&gt;0|\omega_2)\\ = \frac{1}{2} \int_{b_l}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}Z^2)dZ + \frac{1}{2} \int_{b_l}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}Z^2)dZ\\ = \int_{b_l}^{+\infty}\frac{1}{(2\pi)^{\frac{1}{2}}}exp(-\frac{1}{2}Z^2)dZ Pe=P(ω1)P(z=xTμ<0ω1)+P(ω2)P(z=xTμ>0ω2)=21bl+(2π)211exp(21Z2)dZ+21bl+(2π)211exp(21Z2)dZ=bl+(2π)211exp(21Z2)dZ
Where b l = ∥ μ ∥ b_l = \lVert \mu \rVert bl=μ

Computer Experiment

Experiment 5.2

meaning of S_w, S_b, S_m, J3

number of classes: M M M

number of training samples in class ω i \omega_i ωi: n i n_i ni

number of features: N N N

dimension of features: l l l

Within Class:
S w = ∑ i = 1 M P i S w i w h e r e S w i = E [ ( x − μ i ) ( x − μ i ) T ] , P i = n i N S_w = \sum_{i=1}^{M}P_i S_{wi}\\ where \quad S_{wi} = E[(x-\mu_i)(x-\mu_i)^T], \quad P_i = \frac{n_i}{N} Sw=i=1MPiSwiwhereSwi=E[(xμi)(xμi)T],Pi=Nni
Between Class:
S b = ∑ i = 1 M P i ( μ i − μ 0 ) ( μ i − μ 0 ) T w h e r e μ 0 = ∑ i = 1 M P i μ i S_b = \sum_{i =1}^{M} P_i (\mu_i - \mu_0)(\mu_i - \mu_0)^T\\ where \quad \mu_0 = \sum_{i=1}^{M} P_i \mu_i Sb=i=1MPi(μiμ0)(μiμ0)Twhereμ0=i=1MPiμi
Mixture Scatter:
S m = E [ ( x − μ 0 ) ( x − μ 0 ) T ] = S w + S b S_m = E[(x-\mu_0)(x-\mu_0)^T] = S_w + S_b Sm=E[(xμ0)(xμ0)T]=Sw+Sb
Criteria J 3 J_3 J3:
J 3 = t r a c e ( S w − 1 S m ) J_3 = trace(S_w^{-1}S_m) J3=trace(Sw1Sm)

code: experiment5_2.m
%% Computer Experiment 5.2
close('all'); clear; clc;
m = [-10 -10 10 10; 
     -10 10 -10 10];
m_test = [-1 -1 1 1;
          -1 1 -1 1];
s1 = 0.2 * [1 0;0 1]; s2 = 3 * [1 0;0 1];
P = [0.25 0.25 0.25 0.25]';
N = 400; % 100 points each class, 4 class
%% the Generated 400 Vectors in X1, X1_test, X2, X2_test
randn('seed', 0); % reproducible
for i = 1:size(m, 2) 
    if i == 1
        X1 = mvnrnd(m(:, i), s1, fix(P(i)*N))';
        X1_test = mvnrnd(m_test(:, i), s1, fix(P(i)*N))';
        X2 = mvnrnd(m(:, i), s2, fix(P(i)*N))';
        X2_test = mvnrnd(m_test(:, i), s2, fix(P(i)*N))';
    else
        X1 = [X1, mvnrnd(m(:, i), s1, fix(P(1)*N))'];
        X1_test = [X1_test, mvnrnd(m_test(:, i), s1, fix(P(1)*N))'];
        X2 = [X2, mvnrnd(m(:, i), s2, fix(P(1)*N))'];
        X2_test = [X2_test, mvnrnd(m_test(:, i), s2, fix(P(1)*N))'];
    end
end
y1 = [ones(1, fix((P(1)*N))), 2 * ones(1, fix(P(2)*N)), 3 * ones(1, fix((P(3)*N))), 4 * ones(1, fix((P(4)*N)))];
y1_test = y1;
y2 = y1; y2_test = y2;
%% Plot all Situations for 4 Classes
figure; plot_point(X1, y1); 
title('Classes are Far away, $${\Sigma = 0.2 I}$$','Interpreter','latex');
figure; plot_point(X1_test, y2_test); 
title('Classes are Close, $${\Sigma = 0.2 I}$$','Interpreter','latex');
figure; plot_point(X2, y2); 
title('Classes are Far away, $${\Sigma = 3 I}$$','Interpreter','latex');
figure; plot_point(X2_test, y2_test); 
title('Classes are Close, $${\Sigma = 3 I}$$','Interpreter','latex');
%% Calculate S_w, S_b, S_m, J3 = trace(S_w \ S_m)
[ S_w, S_b, S_m ] = Calc_SwSbSm( X1, y1 )
J_3 = J3(S_w, S_m)
[ S_w, S_b, S_m ] = Calc_SwSbSm( X1_test, y1_test )
J_3 = J3(S_w, S_m)
[ S_w, S_b, S_m ] = Calc_SwSbSm( X2, y2 )
J_3 = J3(S_w, S_m)
[ S_w, S_b, S_m ] = Calc_SwSbSm( X2_test, y2_test )
J_3 = J3(S_w, S_m)

experiment5_2_1

experiment5_2_2

experiment5_2_3

experiment5_2_4

result
% m = [-10 -10 10 10; 
%      -10 10 -10 10];
% Sigma = 0.2 I
S_w =
    0.2070    0.0046
    0.0046    0.2145
S_b =
   99.8278   -0.2653
   -0.2653  100.0591
S_m =
  100.0348   -0.2607
   -0.2607  100.2736
J_3 =  951.3471
% m_test = [-1 -1 1 1;
%           -1 1 -1 1];
% Sigma = 0.2 I
S_w =
    0.2042    0.0035
    0.0035    0.1999
S_b =
    1.0225   -0.0537
   -0.0537    0.9842
S_m =
    1.2266   -0.0502
   -0.0502    1.1841
J_3 =   11.9440
% m = [-10 -10 10 10; 
%      -10 10 -10 10];
% Sigma = 3 I
S_w =
    3.0501   -0.0759
   -0.0759    3.1290
S_b =
   99.7179   -0.4153
   -0.4153  100.9610
S_m =
  102.7680   -0.4912
   -0.4912  104.0900
J_3 =   66.9920
% m_test = [-1 -1 1 1;
%           -1 1 -1 1];
% Sigma = 3 I
S_w =
    2.8682   -0.0492
   -0.0492    2.9545
S_b =
    1.1316    0.0025
    0.0025    1.1283
S_m =
    3.9997   -0.0466
   -0.0466    4.0828
J_3 =    2.7766
conclusion
  1. When Σ \Sigma Σ of classes are the same:
    S w ≈ Σ S_w \approx \Sigma\\ SwΣ

  2. When classes are Far away ⇒ \Rightarrow t r a c e ( S b ) trace(S_b) trace(Sb) is big.
    t r a c e ( S b ) = 1 N ∑ i = 1 M n i ( μ i − μ 0 ) 2 , w h e r e μ 0 = 1 N ∑ i = 1 M n i μ i trace(S_b) =\frac{1}{N} \sum_{i=1}^{M} n_i (\mu_i-\mu_0)^2, \quad where \quad \mu_0 = \frac{1}{N} \sum_{i=1}^{M} n_i \mu_i trace(Sb)=N1i=1Mni(μiμ0)2,whereμ0=N1i=1Mniμi

  3. For J 3 = t r a c e ( S w − 1 S m ) J3 = trace(S_w^{-1} S_m) J3=trace(Sw1Sm):

    • Relationship of σ , t r a c e ( s b ) \sigma, trace(s_b) σ,trace(sb)and J 3 J3 J3:
      ⇒ Σ = σ I a l s o S w ≈ Σ = σ I J 3 = t r a c e ( S w − 1 S m ) ≈ t r a c e ( 1 σ I S m ) = t r a c e ( S m ) σ = t r a c e ( S w + S b ) σ = t r a c e ( S w ) + t r a c e ( S b ) σ ≈ σ l + t r a c e ( S b ) σ = l + t r a c e ( S b ) σ \Rightarrow \Sigma = \sigma I\\ also \quad S_w \approx \Sigma = \sigma I\\ J3 = trace(S_w^{-1}S_m) \approx trace(\frac{1}{\sigma}I S_m) = \frac{trace(S_m)}{\sigma}\\ = \frac{trace(S_w + S_b)}{\sigma} = \frac{trace(S_w) + trace(S_b)}{\sigma} \approx \frac{\sigma l + trace(S_b)}{\sigma} = l + \frac{trace(S_b)}{\sigma} Σ=σIalsoSwΣ=σIJ3=trace(Sw1Sm)trace(σ1ISm)=σtrace(Sm)=σtrace(Sw+Sb)=σtrace(Sw)+trace(Sb)σσl+trace(Sb)=l+σtrace(Sb)

      m = 10 [ − 1   − 1   1   1 ; − 1   1   − 1   1 ] , σ = 0.2 m = 10[-1\ -1\ 1\ 1;-1\ 1\ -1\ 1], \sigma = 0.2 m=10[1 1 1 1;1 1 1 1],σ=0.2 m = [ − 1   − 1   1   1 ; − 1   1   − 1   1 ] , σ = 0.2 m = [-1\ -1\ 1\ 1;-1\ 1\ -1\ 1], \sigma = 0.2 m=[1 1 1 1;1 1 1 1],σ=0.2
      J 3 J3 J3951.347111.9440
      l + t r a c e ( S b ) σ l+\frac{trace(S_b)}{\sigma} l+σtrace(Sb)1001.412.0335
      m = 10 [ − 1   − 1   1   1 ; − 1   1   − 1   1 ] , σ = 3 m = 10[-1\ -1\ 1\ 1;-1\ 1\ -1\ 1], \sigma = 3 m=10[1 1 1 1;1 1 1 1],σ=3 m = [ − 1   − 1   1   1 ; − 1   1   − 1   1 ] , σ = 3 m = [-1\ -1\ 1\ 1;-1\ 1\ -1\ 1], \sigma = 3 m=[1 1 1 1;1 1 1 1],σ=3
      J 3 J3 J366.99202.7766
      l + t r a c e ( S b ) σ l +\frac{trace(S_b)} {\sigma} l+σtrace(Sb)68.89302.7533
    • How J 3 J3 J3 changes:

      Classes are Far away:
      ⇒ ( μ i − μ 0 ) 2 ↑ ⇒ t r a c e ( S b ) = 1 N ∑ i = 1 M n i ( μ i − μ 0 ) 2 ↑ ⇒ J 3 = t r a c e ( S w − 1 S b ) ≈ l + t r a c e ( S b ) σ ↑ \Rightarrow (\mu_i-\mu_0)^2 \uparrow\\ \Rightarrow trace(S_b) =\frac{1}{N} \sum_{i=1}^{M} n_i (\mu_i-\mu_0)^2 \uparrow\\ \Rightarrow J3 = trace(S_w^{-1}S_b) \approx l + \frac{trace(S_b)}{\sigma} \uparrow (μiμ0)2trace(Sb)=N1i=1Mni(μiμ0)2J3=trace(Sw1Sb)l+σtrace(Sb)
      Features within every class are Close:
      ⇒ σ ↓ ⇒ J 3 = t r a c e ( S w − 1 S b ) ≈ l + t r a c e ( S b ) σ ↑ \Rightarrow \sigma \downarrow\\ \Rightarrow J3 = trace(S_w^{-1}S_b) \approx l + \frac{trace(S_b)}{\sigma} \uparrow σJ3=trace(Sw1Sb)l+σtrace(Sb)

Experiment 5.4

FDR: Fisher’s discriminant ratio

Theory of Fisher’s Linear Discriminant

LDA_1
LDA_2
LDA_3
LDA_4
LDA_5

Columns of w w w are corresponding to the Highest Eigen Values of S W − 1 S B S_W^{-1}S_B SW1SB

code: experiment5_4.m
%% Computer Experiment 5.4
close('all'); clear; clc;
m = [2 2.5; 
     4 10];
s1 = [1 0;0 1]; s2 = 0.25 * [1 0;0 1];
P = [0.5 0.5]';
N = 200; % 100 points each class, 2 class
%% the Generated 200 Vectors in X1, X1_test, X2, X2_test
randn('seed', 0); % reproducible
for i = 1:size(m, 2) 
    if i == 1
        X1 = mvnrnd(m(:, i), s1, fix(P(i)*N))';
        X2 = mvnrnd(m(:, i), s2, fix(P(i)*N))';
    else
        X1 = [X1, mvnrnd(m(:, i), s1, fix(P(1)*N))'];
        X2 = [X2, mvnrnd(m(:, i), s2, fix(P(1)*N))'];
    end
end
y1 = [ones(1, fix((P(1)*N))), 2 * ones(1, fix(P(2)*N))];
y2 = y1; 
%% Get FDR value, w (line projected on) of X1, X2
[ S_w, S_b, S_m ] = Calc_SwSbSm( X1, y1 )
[ FDR_1, w_1 ] = FDR( X1, y1 , 1) %  set D_y: Dimension of w = 1
S_w \ [m(:, 1)-m(:, 2)]
ans = ans / sqrt(sum(ans.^2))
[ S_w, S_b, S_m ] = Calc_SwSbSm( X2, y2 );
[ FDR_2, w_2 ] = FDR( X2, y2 , 1)
S_w \ [m(:, 1)-m(:, 2)]
ans = ans / sqrt(sum(ans.^2))
%% Plot all Situations for 4 Classes
f1 = figure; plot_point(X1, y1); 
hold on; h1 = ezplot(@(x, y) w_1(1)*x + w_1(2)*y);
hold on; H1 = ezplot(@(x, y) w_1(2)*x - w_1(1)*y, [-2 8 0 15]);
f2 = figure; plot_point(X2, y2); 
hold on; h2 = ezplot(@(x, y) w_2(1)*x + w_2(2)*y);
hold on; H2 = ezplot(@(x, y) w_2(2)*x - w_2(1)*y, [-4 6 0 12]);
figure(f1); title('$${\Sigma = I}$$','Interpreter','latex');
set(h1,'Color','r'); set(H1,'Color','g');
legend([h1 H1], 'y = wTx', 'line to be projected on', 'Location', 'Best')
figure(f2); title('$${\Sigma = 0.25 I}$$','Interpreter','latex');
set(h2,'Color','r'); set(H2,'Color','g');
legend([h2 H2], 'y = wTx', 'line to be projected on', 'Location', 'NorthWest')

experiment5_4_1
experiment5_4_2

result
% Sigma = I
FDR_1 =    8.1336
w_1 =
   -0.1118
   -0.9937
S_w \ [m(:, 1)-m(:, 2)] = % for 2 classes
   -0.6136
   -5.5634
normalized S_w \ [m(:, 1)-m(:, 2)] =
   -0.1096
   -0.9940
% Sigma = 0.25 I
FDR_2 =   38.4050
w_2 =
    0.0075
   -1.0000
S_w \ [m(:, 1)-m(:, 2)] = % for 2 classes
   -0.0019
  -25.9308
normalized S_w \ [m(:, 1)-m(:, 2)] =
   -0.0001
   -1.0000
conclusion
  1. Theoretically, for 2 classes:

    When J ( w ) J(w) J(w) is maximized,
    D i f f e r e n t i a t i n g J ( w ) = w T S b w w T S w w H a v i n g ( w T S b w ) S w w = ( w T S b w ) S b w ⇒ w = J ( w ) ( S w − 1 S b ) w , J ( w ) = k 1 A l s o S b = ( m 1 − m 2 ) ( m 1 − m 2 ) T , S b w = ( ( m 1 − m 2 ) T w ) ( m 1 − m 2 ) , ( ( m 1 − m 2 ) T w ) = k 2 ⇒ w = k 1 k 2 S w − 1 ( m 1 − m 2 ) Differentiating \quad J(w) = \frac{w^T S_b w}{w^T S_w w}\\ Having \quad (w^T S_b w) S_w w = (w^T S_b w) S_b w\\ \Rightarrow \quad w = J(w) (S_w^{-1}S_b) w, \quad J(w) = k_1\\ Also \quad S_b = (m_1 - m_2)(m_1 - m_2)^T, \quad S_b w = ((m_1- m_2)^T w) (m_1 - m_2), \quad ((m_1- m_2)^T w) = k_2\\ \Rightarrow \quad w = k_1 k_2 S_w^{-1}(m_1 - m_2) DifferentiatingJ(w)=wTSwwwTSbwHaving(wTSbw)Sww=(wTSbw)Sbww=J(w)(Sw1Sb)w,J(w)=k1AlsoSb=(m1m2)(m1m2)T,Sbw=((m1m2)Tw)(m1m2),((m1m2)Tw)=k2w=k1k2Sw1(m1m2)
    So w w w has the same direction with S w − 1 ( m 1 − m 2 ) S_w^{-1}(m_1 - m_2) Sw1(m1m2)

    Actually:

    When Σ = I \Sigma = I Σ=I, covariance is big enough, w w w and S w − 1 ( m 1 − m 2 ) S_w^{-1}(m_1 - m_2) Sw1(m1m2) are in the same direction.

    When Σ = 0.25 I \Sigma = 0.25 I Σ=0.25I, covariance is too small, there is big difference between directions of w w w and S w − 1 ( m 1 − m 2 ) S_w^{-1}(m_1 - m_2) Sw1(m1m2).

    w w w S w − 1 ( m 1 − m 2 ) S_w^{-1}(m_1 - m_2) Sw1(m1m2)normalized S w − 1 ( m 1 − m 2 ) S_w^{-1}(m_1 - m_2) Sw1(m1m2) J ( w ) J(w) J(w)
    Σ = I \Sigma = I Σ=I-0.1118; -0.9937-0.6136; -5.5634-0.1096; -0.99408.1336
    Σ = 0.25 I \Sigma = 0.25I Σ=0.25I0.0075; -1.0000-0.0019; -25.9308-0.0001; -1.000038.4050
  2. Theoretically:
    H a v i n g S w ≈ Σ = σ I , R e s t r a i n t   c o n d i t i o n : w T w = 1 , M a x   e i g e n   v a l u e   o f   S b : Λ m a x D i f f e r e n t i a t i n g J ( w ) = w T S b w w T S w w H a v i n g ( w T S b w ) S w w = ( w T S b w ) S b w ⇒ e i g e n   v a l u e   p r o b l e m : J ( w ) w = S w − 1 S b w ≈ S b σ w F o r   2   c l a s s e s : J ( w ) ≈ λ m a x − σ m a x   e i g e n   v a l u e   o f S b σ J ( w ) ≈ λ m a x − σ = Λ m a x σ Having \quad S_w \approx \Sigma = \sigma I, \quad Restraint \ condition: w^T w = 1, \quad Max\ eigen\ value\ of\ S_b: \Lambda_{max}\\ Differentiating \quad J(w) = \frac{w^T S_b w}{w^T S_w w}\\ Having \quad (w^T S_b w) S_w w = (w^T S_b w) S_b w\\ \Rightarrow \quad eigen\ value\ problem: J(w)w=S_w^{-1}S_b w \approx \frac{S_b}{\sigma} w\\ For\ 2\ classes: J(w) \approx \lambda_{max-\sigma} \quad max\ eigen\ value\ of \quad \frac{S_b}{\sigma}\\ J(w) \approx \lambda_{max-\sigma} = \frac{\Lambda_{max}}{\sigma} HavingSwΣ=σI,Restraint condition:wTw=1,Max eigen value of Sb:ΛmaxDifferentiatingJ(w)=wTSwwwTSbwHaving(wTSbw)Sww=(wTSbw)Sbweigen value problem:J(w)w=Sw1SbwσSbwFor 2 classes:J(w)λmaxσmax eigen value ofσSbJ(w)λmaxσ=σΛmax
    When Distance between centers is not changed:
    ⇒ ( μ i − μ 0 ) ( μ i − μ 0 ) T = c o n s t   m a t r i x ⇒ S b = 1 N ∑ i = 1 M n i ( μ i − μ 0 ) ( μ i − μ 0 ) T = c o n s t   m a t r i x ⇒ Λ m a x = c o n s t ⇒ J ( w ) σ ≈ Λ m a x = c o n s t \Rightarrow (\mu_i-\mu_0)(\mu_i-\mu_0)^T = const\ matrix\\ \Rightarrow S_b =\frac{1}{N} \sum_{i=1}^{M} n_i (\mu_i-\mu_0)(\mu_i-\mu_0)^T = const\ matrix\\ \Rightarrow \Lambda_{max} = const\\ \Rightarrow J(w)\sigma \approx \Lambda_{max} = const (μiμ0)(μiμ0)T=const matrixSb=N1i=1Mni(μiμ0)(μiμ0)T=const matrixΛmax=constJ(w)σΛmax=const
    σ \sigma σ of classes is big $\Rightarrow $ FDR: Fisher’s discriminant ratio is small.
    σ ↑ ⇒ J ( w ) ≈ λ m a x − σ = Λ m a x σ ↓ \sigma \uparrow\\ \Rightarrow J(w) \approx \lambda_{max-\sigma} = \frac{\Lambda_{max}}{\sigma} \downarrow σJ(w)λmaxσ=σΛmax
    σ \sigma σ of classes is small $\Rightarrow $ FDR: Fisher’s discriminant ratio is big.
    σ ↓ ⇒ J ( w ) ≈ λ m a x − σ = Λ m a x σ ↑ \sigma \downarrow\\ \Rightarrow J(w) \approx \lambda_{max-\sigma} = \frac{\Lambda_{max}}{\sigma} \uparrow σJ(w)λmaxσ=σΛmax
    Actually:

    σ \sigma σ J ( w ) J(w) J(w) σ J ( w ) \sigma J(w) σJ(w) Λ m a x \Lambda_{max} Λmax σ J ( w ) Λ m a x × 100 % \frac{\sigma J(w)}{\Lambda_{max}} \times 100\% ΛmaxσJ(w)×100%
    Σ = I \Sigma = I Σ=I18.13368.13368.751592.94%
    Σ = 0.25 I \Sigma = 0.25I Σ=0.25I0.2538.40509.60138.9344107.46%

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断路器保护灵敏度校验整改及剩余电流监测试点应用站用交流系统断

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值