77、自适应滤波器的统计分析与性能评估

自适应滤波器的统计分析与性能评估

1. 稳态分析:能量守恒方法

能量守恒方法(也称为反馈方法)基于能量守恒关系,适用于一大类自适应滤波器。为了推导该关系,我们首先假设环境是平稳的($q(n) \equiv 0$)。

  • 关键公式推导

    • 超额后验误差定义为:$e_p(n) = \tilde{w}^H(n + 1)\varphi(n)$。
    • 通过一系列推导,我们得到:$e_p(n) = e_a(n) - \rho(n)|\varphi(n)|^2_{M(n)}e(n)$。
    • 进一步定义$\bar{\rho}(n)$,并得到能量守恒关系:$|\tilde{w}(n + 1)|^2_{M^{-1}(n)} + \bar{\rho}(n)|e_a(n)|^2 = |\tilde{w}(n)|^2_{M^{-1}(n)} + \bar{\rho}(n)|e_p(n)|^2$。
    • 计算稳态 EMSE 时,对相关公式两边取期望,得到:
      [
      \begin{align }
      E\left[|\tilde{w}(n + 1)|^2_{M^{-1}(n)}\right] &= E\left[|\tilde{w}(n)|^2_{M^{-1}(n)}\right] + E\left[\rho^2(n)|e(n)|^2|\varphi(n)|^2_{M(n)}\right] \
      &- E\left[\rho(n)(e_a(n)e^
      (n) + e^ a(n)e(n
使用雅可比椭圆函数为Reissner平面有限应变梁提供封闭形式解(Matlab代码实现)内容概要:本文介绍了如何使用雅可比椭圆函数为Reissner平面有限应变梁问题提供封闭形式的解析解,并结合Matlab代码实现该求解过程。该方法能够精确描述梁在大变形条件下的非线性力学行为,适用于几何非线性强、传统线性理论失效的工程场景。文中详细阐述了数学建模过程,包括基本假设、控制方程推导以及利用雅可比椭圆函数进行积分求解的技术路线,最后通过Matlab编程验证了解的准确性有效性。; 适合人群:具备一定固体力学、非线性结构分析基础,熟悉Matlab编程的研究生、博士生及科研人员,尤其适合从事结构力学、航空航天、土木工程等领域中大变形问题研究的专业人士; 使用场景及目标:① 掌握Reissner梁理论在有限应变条件下的数学建模方法;② 学习雅可比椭圆函数在非线性微分方程求解中的实际应用技巧;③ 借助Matlab实现复杂力学问题的符号计算数值验证,提升理论仿真结合能力; 阅读建议:建议读者在学习前复习弹性力学非线性梁理论基础知识,重点关注控制方程的推导逻辑边界条件的处理方式,同时动手运行并调试所提供的Matlab代码,深入理解椭圆函数库的调用方法结果可视化流程,以达到理论实践深度融合的目的。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值