- 博客(24)
- 收藏
- 关注
原创 第六章 大模型策略--新闻评分
公司特定新闻——包括公告、报告、分析师意见和研究成果——对市场情绪以及随后的股价都有影响。新闻评分模块负责新闻采集、分类对股票具有影响力新闻,汇集最近N天内的新闻,确保它能够捕捉到最重要的信息。
2024-11-24 11:05:47
206
原创 第六章 大模型策略--背景和逻辑
近年来,大型语言模型 (LLM) 出现,为金融领域带来了革命性的变革。这些强大的 AI 系统不仅能够理解和生成自然语言,还能进行复杂的数据分析和推理,为投资决策提供强有力的支持。本文将探讨 LLM 在股票选择和金融分析中的应用潜力,展示 LLM如何助力投资者实现精准投资。优势数据处理能力: LLM可以快速处理和分析大量金融数据,包括市场数据、新闻、公司财务面信息等,并能从非结构化数据中提取关键信息,例如从新闻文章中分析市场情绪。客观性: 与人类分析师相比,受认知偏差的影响较小,能够提供更客观的分析结果。
2024-11-23 16:45:30
1174
原创 第四章 规则策略--多周期组合策略
多周期交易策略是一种综合考虑多个时间周期的市场分析方法,通过分析不同周期的价格走势和市场情绪,以寻找交易机会和风险管理,大周期看方向,小周期看入场点和止损点。
2024-11-23 16:44:29
704
原创 第四章 规则策略--指标组合策略
均线和MACD组合策略是一种经典的技术分析方法,通过结合移动平均线和MACD指标来判断股票价格的走势和买卖信号。在均线和MACD组合策略中,首先需要设置多条不同周期的移动平均线,以反映不同时间段的股票价格平均成本。常用的移动平均线包括5日、10日、20日、60日、120日和240日等。这些均线从上到下依次排列,形成多头排列形态,表明市场处于上升趋势。同时,还需要计算MACD指标,该指标包括三条线:DIF线、DEA线和MACD柱状图。
2024-11-23 16:43:47
391
原创 第四章 规则策略--双底策略
双底交易系统是一种基于技术分析的交易策略,它主要依赖于股票价格在特定时期内形成两个底部形态的现象。双底形态,也称为“W底”,是股票价格走势中的一种常见形态。它表示在一段时间内,股票价格两次下跌到相近的低位,然后开始反弹。这种形态通常发生在股票价格经势转向的时候,即从一个下跌趋势转向上升趋势。在双底交易系统中,投资者会在第二个底部形成后买入股票。这是因为在双底形态中,第二个底部通常比第一个底部高,这表明市场的买盘力量正在增强,股票价格有可能反弹。
2024-11-23 16:43:06
372
原创 第四章 规则策略--RUMI策略
RUMI策略的原理是采用对均线偏离度平滑处理的方式,以更好地识别趋势机会。该策略涉及两条均线,一条是快速均线,另一条是慢速均线。在一定的时间周期内,通过计算快慢均线的偏离度(两者相减)来获得每个时间点的差值,并将这些差值简单求和再除以时间周期,得出当前的RUMI指标。RUMI策略对偏离度使用SMA(简单移动平均)进行平滑处理,以降低敏感度并解决均线缠绕的问题。交易信号基于RUMI指标的值,当RUMI下穿0轴时,卖出做空;当RUMI上穿0轴时,买入做多。
2024-11-23 16:42:19
675
原创 第四章 规则策略--通道突破策略
该策略一般使用20周期内的最高价和最低价来显示市场价格的波动性,当其通道窄时表示市场波动较小,反之通道宽则表示市场波动比较大。当价格冲破该通道的上轨道时,就是可能的买入信号;反之,冲破下轨时就是可能的卖出信号。上轨 = Max(最高低,n), n日最高价的最大值。下轨 = Min(最低价,n), n日最低价的最小值。
2024-11-23 16:41:04
203
原创 第四章 规则策略--均线排列策略
多均线排列策略是一种基于移动平均线的技术分析方法,通过观察不同周期的移动平均线排列顺序,判断股票价格的趋势和买卖信号。在多均线排列策略中,通常会选择不同周期的移动平均线,例如5日、10日、20日、60日、120日和240日等。这些均线从上到下依次排列,形成多头排列形态,表明市场处于上升趋势。当短期均线向上突破中长期均线时,被认为是买入信号;而当短期均线向下突破中长期均线时,被认为是卖出信号。
2024-11-22 12:34:24
463
原创 第四章 规则策略--双均线策略
当快线由下向上穿过慢线,形成金叉,被视为买入信号,因为这意味着短期价格上涨速度超过长期平均水平,可能预示着一轮上涨趋势的开始。相反,当快线由上向下穿过慢线,形成死叉,被视为卖出信号,因为这可能预示着一轮下跌趋势的开始。通常,短期移动平均线对价格变动反应较快,称为快线;长期移动平均线对价格变动反应较慢,称为慢线。滞后性:由于移动平均线是基于历史数据计算的,因此该策略具有一定的滞后性,可能错过市场的最佳入场或离场时机。以上信息仅供参考,投资需谨慎,实际交易中的操作需要根据具体的市场情况和个人的交易经验来判断。
2024-11-22 12:08:52
503
原创 第四章 规则策略--基本面选股策略
从基本面分析的角度看,我们要寻找那些处于上升期、成长期的公司,因此在量化的时候以营业收入增长率达到10%作为基准进行评分,以最近季度增长率与10%进行对比,低于10%则每减少1%减1分(四舍五入整数),直至0分;评分以前三年度平均存货周转率为基准计5分,以最近季度的年化存货周转率与前三年度平均存货周转率进行对比,每提高2%加1分,最多至10分,每降低2%减1分,直至0分。书中将将选择标准定在20%,即以增长20%为基准计5分,以最近季度增长率与20%进行对比,低于20%则每减少2%减1分,直至0分;
2024-11-22 12:07:40
1135
原创 第三章 关键技术--回测系统
股票量化回测是一种基于历史行情数据评估交易策略表现和风险特征的量化工具。通过对收益率、最大回撤、夏普比率等基本指标的分析,以及与指数的对比,投资者可以全面了解策略在不同时间段内的盈利能力和风险水平。重点就是关注各只股票上的收益表现,以优化投资组合的配置,以及每日持仓列表和交易订单列表可以帮助进一步优化策略。但要保持数据一致性和策略正确性,时刻注意数据穿越发生。
2024-11-22 12:04:44
1120
原创 第三章 关键技术--决策引擎
它是整个交易系统的决策中心,它是最核心的链路,负责一次交易链路的全过程。当每日发起交易请求时,决策引擎是负责基于特征数据,利用策略判断出股票的持仓,减仓,空仓,买入,卖出分类情况,然后基于该分类,利用资金分配策略,通过交易,最终达到帐户持仓状态,它由3个模块组成,分别为:交易:依据每一个仓槽状态,处理不同情况,仓槽为空时,走建仓和分配资金逻辑,仓槽不为空时,根据持仓的股票状态,决定减仓或空仓。策略:依据各类特征数据,判断出持仓情况,具备多策略共同决策能力,具备便于迭代的动态加载策略脚本能力。
2024-11-22 12:01:35
701
原创 第三章 关键技术--数据总线
Databus负责从各种异构数据源向目标数据仓库进行数据转化,这个过程是根据不同的实效性来完成的。在构建数据仓库的过程中,Databus扮演着至关重要的角色,可以被视为构建数据仓库的第一步。如果我们将数据仓库的模型设计比喻为大厦的设计蓝图,那么数据就是砖瓦。而Databus则负责将这些砖瓦按照设计蓝图的要求,构建成坚实的大厦。换句话说,Databus就是实现数据仓库模型设计的过程。在具体的工作流程中,Databus首先从各种异构数据源中获取原始数据。
2024-11-22 11:59:15
770
原创 第三章 关键技术--数据仓库
在金融行业中,关系型数据库通常用于存储交易数据、客户数据和市场数据等结构化数据,以及需要进行复杂查询和分析的数据。金融数据库的数据来源广泛,包括客户通过页面操作存储的实体或配置信息、通过ETL(抽取、转换、加载)等技术从异构数据源(如股票价格数据、财务数据、宏观数据等)抽取的数据,以及使用数据挖掘等手段从现有数据中获取的数据,包括基本面数据、宏观未来趋势、策略回测数据等。金融数据库采用集中式存储和管理数据的方式,将各种金融业务数据,如交易数据、客户数据、市场数据等,都存储在一个中心化的数据仓库中。
2024-11-22 11:56:28
1013
原创 第二章 基础知识--必备技能和工具
在量化交易这一专业领域,多种编程语言各显神通,Python、C++和Java都是其中的佼佼者。这三种语言各具特色与优势,适应了多样化的应用需求。Python,简单易学且强大,使其在数据科学和量化交易领域备受青睐。C++和Java,则为追求极致性能与低延迟的交易系统提供了坚实支持。本书所探讨的交易系统,正是基于Python构建。Python的丰富第三方库、易用性,使其成为系统的不二之选。即便缺乏编程背景,读者也能通过在线学习迅速掌握Python,因此,本书将不再赘述基础编程内容。
2024-11-22 11:55:10
691
原创 第三章 关键技术--总体架构
要建立一个成功的量化交易系统,投资者需要关注以下几个关键因素:数据获取和处理:量化交易系统需要大量的历史和实时数据来支持策略的研究和实施。投资者需要确保数据的质量和完整性,并进行适当的数据清洗和预处理。确定交易策略:投资者需要根据自己的风险偏好、投资目标和市场环境,选择合适的交易策略。这可能包括趋势跟踪、套利、市场中性等策略。模型建立和优化:投资者需要利用统计学、机器学习等方法,建立并优化交易模型。这包括特征选择、参数调整和模型验证等过程。
2024-11-22 10:27:17
627
原创 第三章 关键技术--背景和逻辑
开发量化交易系统的过程,犹如探寻金融市场的圣杯之旅。初级交易系统具有数据采集与策略决策持仓的初步能力。而后在股票市场的实际应用,系统为交易决策提供了有价值的指导,同时也通过持续的交易实践与盈利,进一步坚定打造自动化交易系统的决心。下一步对系统进行了重要升级,开始全面深入思考交易系统的各个组成部分。在多策略决策、资金分配、与券商的打通以及回测等功能被引入后,使我们从繁重的人工交易中彻底解脱出来。经过几年的的实战考验,量化交易系统展现出了卓越的效果,进一步证实了其在实际市场环境中的适应力。
2024-11-22 10:22:41
1234
原创 第二章 基础知识--价格技术分析
价格技术分析是量化交易中的一种重要方法,它主要依赖于历史价格和成交量数据来预测未来市场走势。分析的基本假设是市场价格已经反映了所有已知信息,因此通过研究价格走势和成交量可以发现市场的规律。在本章中,我们将详细介绍技术分析的基本原理、分析方法。
2024-11-22 09:35:34
1285
原创 第二章 基础知识--财务分析与估值
财务报表是企业向股东报告经营状况的重要文件,包括季度报告、半年报、年报等。财务报表主要包括资产负债表、利润表和现金流量表。估值是评估企业价值的关键,通过现金流估值法等手段,我们可以更好地理解市场的智慧和投资机会。财务分析在股票投资中占据重要地位,它涉及粗筛股票池的构建,通过对财务报表的深入研究,我们可以避免许多潜在风险。
2024-11-22 09:33:18
870
原创 第二章 基础知识--宏观分析
宏观经济因素在股票市场中具有决定性的影响。全球的经济活动,涉及到物质与精神资源的生产、流通、分配和消费,常常难以达到理想的供需平衡状态。因此,经济周期性的波动是不可避免的。为了缓解这种波动并推动经济持续稳定地增长,权威机构必须发布并实施相应的金融政策。这种金融周期,可视为经济周期的一个重要组成部分,并且央行有权制定各种金融政策以指导经济的走向。诸如经济增长、通货膨胀、利率以及政府政策等宏观经济因素,都对股票市场的走势和投资者的决策产生了深远的影响。本章将探讨这些宏观经济因素与股票市场之间的紧密联系。
2024-11-22 09:31:11
781
原创 第五章 传统机器学习与深度学习策略
量化交易使用机器学习策略的流程可以归纳如下:数据获取和处理:首先需要获取相应的数据,进行处理后使其符合机器学习模型的要求。特征工程:选择有效的特征,并对其进行工程化处理,包括对数据的预处理(如标准化、缺失值和异常值的处理等)、特征选择、特征构造等。模型选择与训练:根据策略需求选择适合的机器学习模型,然后利用获取的特征进行训练。这一步需要根据实际策略需求以及市场环境等因素进行模型选择和参数调整。模型评估:使用回测数据评估模型的性能。这一步需要设计合理的评估指标,并对模型进行调优。
2024-11-21 22:48:48
2096
原创 第二章 基础知识--交易心理
股票市场的波动往往会引发交易者的情绪波动,导致非理性的决策,要想成为优秀的交易者,必须要具有良好的交易心理素质。交易心理是影响交易者决策和执行的第一因素,对于实现交易成功具有至关重要的作用,它相当于练习武功前的心法,读者通过本章节的学习能够了解交易心理知识,以及如何将交易心里认知提升到风险导向层次。
2024-11-21 19:47:41
1009
原创 第一章 量化交易系统综述
量化交易是一个充满机遇与挑战的领域,要求从业者具备特定的技能和素质。成功并非一蹴而就,而是需要初心和坚守的信念、勤奋的努力以及稳健的心态。在量化交易中,渐进式的财富积累是常态,而非一夜暴富的幻想。理性投资和稳健心态是量化交易的基石。量化交易的核心在于建立一套行之有效的规则体系。这个体系需要从业者深入理解和广泛掌握,涵盖了各种技术和市场分析方法,以及基于这些规则的决策流程。对于投资者而言,掌握并能够熟练运用这些规则是至关重要的,因为它们是实现更好投资结果的关键。
2024-11-21 19:32:56
2375
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人