API解析
API解析代码实现
西安人走哪都要吃泡馍
这个作者很懒,什么都没留下…
展开
-
API------------python中的pow(x,y)函数解析
在python中用到pow函数,一般都是求数值的三次方,pow(x,y)----->其意思是数字x的y次方例如:pow(5,3)------>表示5的三次方,其结果为:555原创 2021-01-20 11:52:38 · 1675 阅读 · 0 评论 -
API解析------------在逻辑回归中predict()与score()的用法
# LogisticRegression是导sklearn包from sklearn.linear_model import LogisticRegression# 在逻辑回归中,先创建LR模型对象,之后再给模型对象传入数据进行分类estimator = LogisticRegression(solver='liblinear', penalty='l2', C =0.5)# 传入的参数是测试的样本数据,返回结果概率,是1或者是0,属于二分类问题y_predict=estimator.pred原创 2021-01-13 12:55:13 · 2524 阅读 · 0 评论 -
API解析------------特征工程标准化StandardScaler()函数
StandardScaler()函数是sklearn包下的,所以每次使用要调用sklearn包。StandardScaler类是处理数据归一化和标准化。在处理数据时经常会出现这中代码:transfer = StandardScaler()x_train=transfer.fit_transform(x_train)x_test = transfer.transform(x_test)先解释下调用fit_transform()与调用transform()的区别fit_trainfrom方法原创 2021-01-13 11:25:16 · 16892 阅读 · 3 评论 -
API解析----------sklearn中的train_test_split()用法
在机器学习中,得到样本数据后需要分为训练数据和测试数据,这时就会用到train_test_split()函数,train_test_split():用于样本切分为训练集和测试集两个数据集,例如:x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3,random_state = 42)其中参数:x:样本中的特征数据y:样本中的结果数据test_size:训练集和测试集数据量的占比,如果是0.3则表示训练为70,原创 2021-01-13 10:50:57 · 911 阅读 · 0 评论 -
API解析------------pandas中的replace用法
replace(原来内容,更改新内容,inplace=True)inplace:默认为false意思指不在源数据上修改内容,反之为True意思在源数据集上修改import numpy as npimport pandas as pd# 创建数据集df = pd.DataFrame(np.random.randn(6,6),columns=['a','b','c','d','e','f'])""" a b c d原创 2021-01-13 08:42:17 · 469 阅读 · 0 评论 -
API解析------------pandas中的iloc与loc用法详解
loc:适合于列名索引import numpy as npimport pandas as pd# 建立数据集,dfdf = pd.DataFrame(np.random.randn(6,6),columns=['a','b','c','d','e','f'])# 查看数据集print(df)""" a b c d e f0 -0.630324 1.066089 -1.914506 -0.原创 2021-01-13 07:58:24 · 229 阅读 · 0 评论