hive 文件格式(列式存储-parquet&orc)

本文介绍了列式存储如何提高数据查询效率,特别是Hive中的ORC和Parquet格式。ORC文件采用行列式存储结合行组,提供多级索引,支持ACID事务,而Parquet同样采用列式存储,数据按行组和页划分,具备高效的压缩和编码。这两种格式优化了大数据扫描和分析的性能。
摘要由CSDN通过智能技术生成

传统的行式数据库,数据按行存储,在没有使用索引的情况下,如果要查询一个字段,需要将整行的数据查找出来,再找到相应的字段,这样的操作是比较消耗I/O资源的。最初的解决方式是建立Hive索引。Hive建立索引是一项比较消耗集群资源的工作,并且需要时刻关注是否更新。数据如有更新,就需要对索引进行重建。数据有更新却没有及时重建或者忘了重建,则会引发使用过程的异常。正是建立Hive索引成本高,又极容易引发异常,所以在实际生产中,Hive索引很少被用到。那列式存储可以解决这个问题。

列式存储的数据则是按列进行存储,每一列存储一个字段的数据,在进行数据查询时就好比走索引查询,效率较高。但是如果需要读取所有的列,例如一个数据平台刚接入数据,需要对所有的字段进行校验过滤,在这种场景下列式存储需要花费比行式存储更多的资源,因为行式存储读取一条数据只需要一次I/O操作,而列式存储则需要花费多次,列数越多消耗的I/O资源越多

ORC格式

ORC存储的文件是一种带有模式描述的行列式存储文件。ORC有别于传统的数据存储文件,它会将数据先按行组进行切分,一个行组内部包含若干行,每一行组再按列进行存储,下图为简化图

ORC 的行列式存储结构结合了行式和列式存储的优点,在有大数据量扫描读取时,可以按行组进行数据读取。如果要读取某个列的数据,则可以在读取行组的基础上,读取指定的列,而不需要读取行组内所有行的数据及一行内所有字段的数据

ORC 文件结

ORC和Parquet是两种常见的列式存储文件格式,它们在不同的情况下具有适用条件。 ORC文件格式适用条件: - 处理大规模数据:ORC文件格式在处理大规模数据时表现出色。它使用列式存储和压缩技术,可以减少I/O操作和存储空间,提高查询性能。 - 复杂的数据结构:如果你的数据包含复杂的数据结构(如嵌套的结构、复杂的数据类型等),ORC文件格式可以更好地支持这些数据类型,并提供更高的查询效率。 - 实时查询:ORC文件格式支持谓词下推和列式存储,这使得它在实时查询场景下表现出色。 Parquet文件格式适用条件: - 高度压缩和列式存储:Parquet文件格式使用列式存储和高效的压缩算法,可以显著减少存储空间,并提供更快的查询性能。 - 多语言支持:Parquet文件格式支持多种编程语言(如Java、Python、R等),这使得它更易于与不同的数据处理框架集成。 - 复杂分析查询:如果你需要进行复杂的分析查询,如聚合、过滤和连接等操作,Parquet文件格式可以提供更高的查询性能。 - 列式存储的优势:由于Parquet使用列式存储,它在处理大规模数据时可以减少I/O操作,并且可以仅读取所需的列,从而提高查询效率。 总的来说,ORC和Parquet文件格式都适用于大规模数据处理和复杂查询分析,但根据具体的使用场景和需求,你可以选择适合你的文件格式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值