这段文字主要探讨了如何分析交通数据中与毒品相关的活动时间变化。作者首先指出数据集中包含“Drugs Related Stops”这一布尔型列,代表了交通拦截中是否与毒品相关。通过计算该列的平均值,可以得出与毒品相关的拦截比例,在本例中不到1%。
作者进一步解释了如何利用“Stop Date Time”列中的时间信息来分析毒品活动的时间变化趋势。他认为,可以通过将“Stop Date Time”列中的小时信息提取出来,并进行分组统计,从而得到每个小时与毒品相关的拦截比例。这样,就可以观察到毒品活动在不同时间的变化趋势,例如,如果夜间比例明显高于白天,就可以推断出毒品活动在夜间更加活跃。
作者还展示了一段代码示例,用于提取“Stop Date Time”列中的小时信息,并进行分组统计。他指出,代码中原本试图使用“hour”列进行分组,但该列并不存在,因此需要使用“ri.stopdatetime.dt.hour”来代替。最后,作者展示了分组统计的结果,并指出通过这种方法可以有效地分析毒品活动的时间变化趋势。
这是我 2018 年 PyCon Pandas 教程的第 8 部分。 本视频涵盖以下主题:布尔运算、分组、日期时间属性、折线图。