学习视觉嘛,必须知道常用数学基础

59人阅读 评论(0) 收藏 举报

单应矩阵,基本矩阵,本质矩阵

  • 参考barfoot 书 p195-

1.归一化图像坐标

  • 这里相机坐标系为,图像和坐标为O,这里假设焦距为1;图像坐标中心早光轴上。

  • 空间中点P在摄像机坐标系下的三维坐标:

  • 利用三角近似关系,P点的图像坐标(齐次坐标); 
    同时假设已知图像坐标,反推会发现只能得到空间坐标的两个约束关系,或者说Z可以是任意值都满足约束关系,即深度无法得到;

2.本质矩阵 essential matrix

2.1 本质矩阵的推导

  • 相机在不同时刻两帧图像同时观察到空间点P,如图:

  • P在两帧上的图像坐标满足几何约束:

  • 其中称为本质矩阵,其参数由运动的pose决定,与相机内参无关;本质矩阵在位姿估计和相机标定上很有用;

  • 约束关系的证明:

2.2特点

  • 描述空间中一点在不同帧之间的几何约束关系
  • 注意这里的图像坐标是空间点在相机平面投影点的齐次坐标(摄像机坐标系下表示)
  • 本质矩阵和相机外参有关系,和内参无关

3.相机内参

  • 这里采用假设焦距为1,图像中心在光轴上,图像像素坐标的原点图像左上角,像素坐标值单位都是像素(整数小格);

  • 像素坐标和归一化图像坐标(可以理解为空间点在平面投影几何坐标的齐次形式)的关系可以描述为:

  • K为相机内参矩阵,是焦距f的像素坐标,是图像中心与图像和光轴交点的偏置(理想情况应该两点重合);考虑到实际像素感光元是正方形的,参数应该对应近似相等;

4.基本矩阵 fundamental matrix

4.2基本矩阵推导

  • 将图像归一化坐标替换为像素点坐标,得到基本矩阵约束(极线约束 epipolar constraint)

  • 这里的基本矩阵约束称为极线约束,如下图,如果两帧之间的一个点坐标,外参矩阵已知,则空间点在另外一帧的坐标被约束在一条极线上,可以用来缩小图像匹配点的搜索范围
  • 基本矩阵也可以用来极端内参矩阵

4.1特点

  • 基本矩阵描述的是不同帧之间同一空间点像素坐标的几何约束关系,由本质矩阵约束中的归一化图像点替换为像素坐标点得到;
  • 基本矩阵和相机内参,外参都有关系
  • 基本矩阵描述的约束又称为极线约束

5.完整模型:空间点到像素坐标

  • 空间点在相机坐标系的坐标到像素坐标的转换关系: 
    P为齐次坐标到而为坐标的映射矩阵,这个模模型清晰的表示出深度信息的丢失,即无法从像素坐标估计出深度信息。

6.单应矩阵 homography matrix

  • 空间点三维坐标到像素坐标(齐次形式)的转换:

  • 如果已知观察的点在某个平面上,利用平面方程的先验信息可以估计出深度

  • 已知相机中心到平面距离和法向量,可以得平面的法线方程

  • 将空间坐标替换为像素坐标:

  • 替换掉,得到由像素齐次坐标到空间坐标的转换

  • 空间点在前后两帧坐标系下的三维坐标的约束关系

  • 带入第一个公式,得到两帧之间同一空间点的像素点坐标的约束关系

  • 将上述公式简写为:

  • 矩阵称为单应矩阵,其中用来度量图像的齐次坐标,可以去掉;所以单应矩阵是pose和平面参数的矩阵;


查看评论

C++ BuilderX的问题与展望(3,展望篇,完)

C++ BuilderX的问题与展望 猛禽[Mental Studio]http://mental.mentsu.com(之三,展望篇,完)说了BCBX这么多的问题,该来谈谈我们的展望了。首先从产品定...
  • Raptor
  • Raptor
  • 2004-01-15 14:03:00
  • 2447

单应矩阵,基本矩阵,本质矩阵 1.归一化图像坐标 2.本质矩阵 essential matrix 2.1 本质矩阵的推导 2.2特点 3.相机内参 4.基本矩阵 fundamental matrix

来源:http://www.cnblogs.com/youzx/p/6385513.html#wiz_toc_9 1.归一化图像坐标 2.本质矩阵 essential matrix 2.1 本质...
  • leoking01
  • leoking01
  • 2017-09-13 11:10:27
  • 1628

应用数学基础学习指导

  • 2010年01月02日 11:22
  • 5.74MB
  • 下载

C#学习路线图:C#必须知道的300个问题 高清版[带完整书签]

  • 2014年08月24日 22:55
  • 74.66MB
  • 下载

《C#必须知道的300个问题》配书源代码

  • 2014年04月26日 16:31
  • 22.89MB
  • 下载

机器学习数学基础(1)-回归、梯度下降

1. 前言本系列文章将总结一些机器学习中应用到的数学基础,想要学好机器学习,首先得去理解其中的数学意义,不一定要到能够轻松自如的推导中间的公式,不过至少要认识这些公式,不然一些相关的论文就看不懂,这个...
  • xuzhongxiong
  • xuzhongxiong
  • 2016-11-19 20:56:04
  • 2020

机器学习之数学基础系列

机器学习是一门集概率论、线性代数、数值计算、最优化理论和计算机科学等多个领域的交叉学科。本系列课程以机器学习中的数学基础为主要内容,摆脱传统的讲概念、记公式、解体的数学学习模式,避开冗长的数学证明,从现实任务出发,让听众在短时间内完美补充概率与统计、线性代数和凸优化等数学基础知识,从而快速上手机器学习。
  • 2017年07月03日 19:23

学习人工智能需要哪些必备的数学基础?

当下,人工智能成了新时代的必修课,其重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底...
  • itheima_Wujie
  • itheima_Wujie
  • 2017-12-10 16:23:09
  • 3003

JAVA编程你必须知道的那些英文单词

第一章:  JDK(Java Development Kit) java开发工具包  JVM(Java Virtual Machine) java虚拟机  Javac  编译命令        ...
  • qq_28633249
  • qq_28633249
  • 2017-07-19 09:05:03
  • 230
    个人资料
    等级:
    访问量: 7万+
    积分: 1444
    排名: 3万+
    最新评论