python使用chatgpt自动帮你抖音直播公屏消息回复互动聊天代码

代码描述:python使用chatgpt自动帮你抖音直播公屏消息回复互动聊天代码

代码标签: python chatgpt 抖音 直播 消息 公屏 互动 回复 消息 代码

下面为部分代码预览,完整代码请点击下载或在bfwstudio webide中打开

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.keys import Keys
import time
import openai

openai.api_key = "openaikey"

def getopenairesponse(keyword):
msg = [{"role": "user", "content": 'Hello World'}]
msg[0]['content'] = keyword
completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=msg)
return completion.choices

# 创建浏览器实例
#driver = webdriver.Chrome()

options = webdriver.ChromeOptions()
#options.add_argument('headless')

driver = webdriver.Chrome(chrome_options=options)
driver.get('https://live.douyin.com/929789927078')
cookie_string="tt_scid=131233242sdfsdfsg(*798wr3sfs; passport_fe_beating_status=false"
cookies = [cookie.strip() for cookie in cookie_string.split(';')]
cookies = [cookie.split('=') for cookie in cookies if cookie]
cookies = [{'name': cookie[0], 'value': cookie[1],"domain":"live.douyin.com"} for cookie in cookies]
print(cookies)
for c in cookies:
driver.add_cookie(c)

# cookie = {
# 'name': 'cookie_name',
# 'value': 'cookie_value'
# }
driver.refresh()

# driver.add_cookie(cookie)

# 进入指.........完整代码请登录后点击上方下载按钮下载查看

### 开发直播间智能回复客服系统的概述 为了构建适用于直播间的智能回复客服系统,开发者可以采用多种技术和框架来实现这一目标。考虑到项目的复杂性和功能需求,建议使用Python作为主要编程语言,并结合特定的库和API。 #### 选择合适的框架和技术栈 对于此类项目,推荐使用PyTorch这样的开源深度学习平台[^1]来进行自然语言处理(NLP)模型训练和支持动态计算图以及自动微分等功能。这有助于提高模型的学习效率并简化开发流程。此外,FastAPI是一个现代、快速(高性能)的Web框架,可用于创建RESTful API服务端接口,方便前后端数据交互和服务部署。 #### 利用开放平台文档 提供了丰富的官方API供第三方开发者调用,这些API涵盖了从基础的信息获取到更高级别的互动操作等多个方面。通过阅读开放平台文档,可以获得关于如何接入直播消息推送、发送弹幕评论等相关接口的具体说明。此过程涉及OAuth认证机制以确保安全可靠的通信连接。 #### 实现智能客服的核心算法 针对智能回复的功能模块设计,核心在于建立有效的对话管理系统。该系统通常依赖于预训练的语言理解模型如BERT或GPT系列,在此基础上进一步定制化调整使之适应具体应用场景下的语义解析能力。当接收到观众提问时,系统会先对其进行意图识别分析,再匹配相应的应答模板给出恰当反馈;如果遇到无法直接作答的情况,则转交人工客服介入处理。 ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForSequenceClassification.from_pretrained('bert-base-chinese') def predict_intent(text): inputs = tokenizer.encode_plus( text, add_special_tokens=True, max_length=64, padding='max_length', truncation=True, return_attention_mask=True, return_tensors="pt" ) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits).item() return prediction ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值