统计页码数字问题

该博客讨论了如何计算一本从1开始页码到自然数n的所有页码中,每个数字0到9出现的次数。通过编程任务,提出了两种算法,一种基于直接遍历,时间复杂度为O(n*log10(n)),另一种基于数学公式,时间复杂度为log10(n)。并给出了源代码实现。
摘要由CSDN通过智能技术生成
统计数字问题

问题描述:
一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数
字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2,…,9。

编程任务:

给定表示书的总页码的10 进制整数n (1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字0,1,2,…,9。

数据输入:

输入数据由文件名为input.txt的文本文件提供。每个文件只有1 行,给出表示书的总页码的整数n。

结果输出:

程序运行结束时,将计算结果输出到文件output.txt中。输出文件共有10行,在第k行
输出页码中用到数字k-1 的次数,k=1,2,…,10。
输入文件示例 输出文件示例
input.txt 
11

output.txt
1
4
1
1
1
1
1
1
1
1

解题思路1:根据输入的数字Num,从1到Num 一 一统计每个数字出现的次数。
算法时间复杂度: O(n*log10(n))

算法:
for(i  1<=  n;  i++) 
{
    i;
    while(t)  {
        count[t% 10]++;   //count数组是每个数字出现次数的计数器
        t/= 10;
    }
}

统计页码数字问题


f(n)=10*f(n-1)+10^(n-1)
f(n-1)=10*f(n-2)+10^(n-2)
f(n-2)=10*f(n-3)+10^(n-3)
              .
              .
              .
f(2)=10f(1)+10^1

可见:f(n)=10^(n-1)+(n-1)*10^(n-1)

即:f(n)=n*10^(n-1),利用此公式计算每个数字的出现次数,计算0的出现次数时,最后减去多余的前导0的出现次数即可。

举例(取区间法):
比如计算32871,从高位向低位看,可以看到该数包含3个0000~9999的区间(0~9999,10000~19999,20000~29999),即每个数字出现的次数为3f(4),其中多余的前导0出现在0000~9999区间中,经观察可知多了10^3+10^2+10^1+1个0。(0000-0999,10^3个0;000-099,10^2个0;00-09,10^1个0;开始的0,10^0个0)
其中,最高位上1,2共出现10^4次。接着计算30000~32871,此处最高位的3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值