Continuation与CPS(Continuation Passing Style)的理解

      Scheme是最早支持Continuation的语言,而Continuation对于初学者来说还是比较难以理解的,以下是我在学习TSPL中Continuation和CPS相关章节时的一些理解。更多Scheme、Continuation、CPS的相关知识到http://w...

2013-06-05 17:14:08

阅读数 44

评论数 0

关于Common Lisp的hot update(热更新)

        CL的热更新也算是其一大特色了,配合着slime和swank就可以带来不同的编程体验!下面我们就来感受一下它的神奇之处。看下面代码:   (defun show (i) (print i)) (defun main () (loop for i from 1...

2013-04-22 15:06:30

阅读数 30

评论数 0

pycurl初体验-利用pycurl产生post请求:上传文件

最近有个事情,需求是发送post请求到web服务器,达到文件上传的目的,这个当然是有原因的,因为那个网站没有做批量上传,而需要上传的东西又太多……好了,废话不多说,进入正题: 这样的小事情当然还是用python来写比较简单快捷,用到http请求最直接的方式是用标准库里面的urllib和urlli...

2012-12-14 21:03:25

阅读数 181

评论数 0

DV算法模拟,仅供参考

这周网络实验看着孩子们那么苦逼,我真是不忍心,不过还是有比较牛的孩子,老人家落后了啊。因为前几天比较忙,一直再搞论文的实验,所以也没亲自动手做一下,今天刚好有兴致,简单做一下吧,DV算法的简单模拟,没有动态加节点,还有一些问题没有考虑,代码略乱,仅供参考。 /*=============...

2012-11-25 19:07:54

阅读数 235

评论数 0

Common Lisp状况系统(condition system)的学习和理解

• 状况系统是这样的:底层代码产生状况---》中层代码制定多种恢复策略-》上层代码处理并选择中层的恢复策略 • 将从错误中恢复的代码与决定选择如何恢复进行分离,也就是说,错误恢复方法在底层提供了,选择哪个进行恢复的选择权交给高层函数。 • 状况系统使得我们在写底层功能函数时只关注函数功...

2012-11-09 18:03:19

阅读数 28

评论数 0

Machine Learning系列实验--支持向量机SVM

  理论部分见:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/17/2591592.html   http://blog.csdn.net/sunmenggmail/article/details/7445035     //这...

2012-11-04 16:31:22

阅读数 22

评论数 0

初步理解common lisp 宏定义中常用到的反引用与逗号间的关系

  在宏定义里面,会经常出现 “`” “,” 的嵌套使用,比较难于理解,下面是书上比较基础的理解: “`“”,”的作用域应该在于他们各自后面紧跟的括号内,直接上例子。 例如: `(a ,(loop for i in '(1 2 3) collect `(,i (+ 1 2)))) ...

2012-10-04 17:11:32

阅读数 10

评论数 0

Machine Learning系列实验--感知机学习

感知机时二分类的线性分类模型,其目的就是寻找通过训练将实例划分为正负两类的分离超平面,其采用的策略是根据现有的超平面和输出值来识别出误分类点,也就是说y*(w*t+b)<=0,并采用随机梯度下降的方法不断修改参数,直至没有误分类点。其实质是最小化误分类点到超平面的距离总和。...

2012-08-28 00:12:09

阅读数 34

评论数 0

随机算法--Las Vegas算法--大数因子分解--Pollard Rho启发式算法(python版)

  ''' Created on 2012-3-10 @author: daweibalong ''' from random import randint f=[] def gcd(m,n): if n>0: r...

2012-08-24 10:23:18

阅读数 28

评论数 0

随机算法--Las Vegas--大数因子分解--Pollard Rho启发式算法(c++版)

  随机算法里的大数因子分解(Pollard Rho启发式算法),vc++6.0中实现,写的时候测的数比较小,只用了int,懒得改了,再用的时候再改成更大的数据类型: 001 #include<iostream> 002 #include&am...

2012-08-24 10:15:49

阅读数 20

评论数 0

后缀数组的python模拟--编程珠玑 15.2

今天看了编程珠玑第15章字符串的前两节,对于后缀数组这玩意很感兴趣(以前学的太少了),对于15.2节的求给定文本输入的最长重复子串的问题,顺着作者的思路和其网站( http://netlib.bell-labs.com/cm/cs/pearls/index.html )上的代码,用c语言实现了一下...

2012-08-24 10:11:04

阅读数 17

评论数 0

关于ctypes调用dll时的参数类型和返回值类型问题

python 调用dll时,一般要指定参数类型和返回值类型: import ctypes ll=ctypes.CDLL("pythontest3.dll") path= ctypes.c_char_p("C:\Users\Pu...

2012-08-24 10:08:04

阅读数 70

评论数 0

Python调用C/C++初步

测试库要求做到全部自动化--动态添加新的计算图像指标可以直接不用重写底层java程序……这段时间在学Python,由于Python的ctypes可以试python轻松调用动态链接库,从而调用c/c++程序,于是想到可以在添加指标的时候有管理员再上传相关方法的dll或so文件,由Python进行调...

2012-08-24 10:05:07

阅读数 12

评论数 0

Machine Learning系列实验--SoftMax Regression

SoftMax回归可以用来进行两种以上的分类,很是神奇!实现过程实在有点坎坷,主要是开始写代码的时候理解并不透彻,而且思路不清晰,引以为戒吧! SoftMax Regression属于指数家族,证明见( http://cs229.stanford.edu/notes/cs229-notes...

2012-08-23 18:15:20

阅读数 16

评论数 0

Machine Learning系列实验--Logistic function解决分类问题

  分类问题的值是离散的,区别于之前的线性回归问题。本次采用Logistic回归来解决分类问题,实验还是参考了pennyliang的http://blog.csdn.net/pennyliang/article/details/7045372#comments。 Logistic回归问题的,...

2012-08-23 18:13:13

阅读数 14

评论数 0

Machine Learning系列实验--参数theta的数学求法

  梯度下降方法通过学习样本不断修改theta值,使得h(x)不断拟合,今天实验的是一种数学的方式来进行theta值的确定,目的跟之前是一样的,求J(θ)达到最小(极小)值,那么有: 令上式等于0,得: 下面用昨天的实验进行验证: from numpy import * ...

2012-08-23 18:10:53

阅读数 21

评论数 0

Machine Learning系列实验--梯度下降(批量梯度,随机梯度)

看了3集斯坦福大学的机器学习课程,很有意思,开始着手回顾以及一些代码的实现,这次做的是批量梯度下降以及随机梯度下降。讲义在 http://cs229.stanford.edu/notes/cs229-notes1.pdf1)批量梯度下降: 2)随机梯度下降:  实验内容借鉴了pennyliang...

2012-08-23 18:08:13

阅读数 38

评论数 0

开博志

新浪博客写技术博客太垃圾了,以前总想着将就一下就ok了,但最近写博客越来越不爽!干脆转到这儿来算了,吼吼 :idea:

2012-08-23 17:55:52

阅读数 12

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭