day7
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
25、并行计算与数值方法研究资源整合
本文系统整合了并行计算与数值方法领域的研究资源,涵盖编程语言标准、核心算法(如迭代法、多重网格法、领域分解法)、并行编程工具与库、硬件平台应用及在石油储层模拟、计算流体动力学等领域的实际应用。通过详细的文献梳理和分类,结合流程图展示从问题提出到解决方案实现的完整路径,为研究人员提供了一套高效利用现有资源进行科学计算与工程仿真开发的方法论支持。原创 2025-11-11 02:35:02 · 11 阅读 · 0 评论 -
24、分布式计算网络与元中心:高性能计算的未来之路
本文探讨了分布式计算网络与元中心在高性能计算中的关键作用。从同构与异构计算网络的基本架构,到PVM、Linda、Express等主流软件工具的应用,全面介绍了如何将分散的计算资源整合为统一的并发系统。文章重点阐述了美国四大超级计算中心联合构建国家元中心的愿景,旨在实现跨地域的资源整合、统一访问和高效协同,推动复杂科学工程问题的模拟与求解。最后展望了未来分布式计算环境的发展方向,强调软硬件协同、程序可移植性及多主体合作的重要性。原创 2025-11-10 16:11:30 · 9 阅读 · 0 评论 -
23、并行计算:编程语言与自动化并行工具的发展
本文探讨了并行计算中编程语言的发展现状与挑战,分析了Fortran和C在并行环境下的局限性,介绍了支持多架构的编程环境如HPF和Fortran D,并重点阐述了自动化并行工具的兴起及其在提升代码可移植性和开发效率方面的作用。文章还指出了当前自动并行化工具在复杂数据依赖分析和并行任务粒度优化方面的不足,提出了结合人工智能、动态调整和预测模型等潜在解决方案,最后展望了并行计算在语言标准化、工具成熟化和应用领域拓展方面的未来发展方向。原创 2025-11-09 12:59:51 · 6 阅读 · 0 评论 -
22、并行计算算法复杂度分析与性能评估
本文深入分析了并行时间步进算法的复杂度,探讨了其在不同条件下的收敛行为与计算效率,并比较了顺序与并行算法在初始猜测和收敛率方面的差异。文章进一步系统评估了并行计算的性能指标,介绍了常规速度up、缩放速度up和广义速度up的定义及其适用场景,指出了各类方法的优缺点。最后,展望了并行计算在软件工具、元计算机构建及性能评估方法上的未来发展趋势,提出了针对算法应用与性能评估的实际建议,为并行计算的研究与实践提供了全面参考。原创 2025-11-08 12:47:30 · 8 阅读 · 0 评论 -
21、并行时间步进算法:原理、实现与应用
本文系统介绍了并行时间步进算法的原理、实现与应用,涵盖抛物型多重网格方法、波形松弛算法、流水线迭代算法和窗口松弛算法,并通过一维热方程的离散化推导了这些算法的统一形式。文章分析了各类算法的特点与性能差异,给出了在不同问题类型下的适用性建议,并展示了其在热传导和流体力学中的应用案例。最后展望了算法优化、多物理场耦合求解及硬件适配等未来发展方向,强调了并行时间步进算法在提升科学计算效率方面的重要价值。原创 2025-11-07 10:10:53 · 7 阅读 · 0 评论 -
20、窗口松弛算法:并行时间步长算法的优化方案
窗口松弛算法是一种优化的并行时间步长算法,通过在处理器间通信前对多个时间步进行迭代,构成‘时间窗口’,从而显著减少通信次数,降低分布式内存系统中的通信开销。该算法在保持渐近收敛速率的同时,需权衡增加的计算量与节省的通信时间。实际应用表明,在求解如热方程等偏微分方程时,选择合适的窗口大小可大幅减少总运行时间。未来可通过自适应窗口调整、结合其他并行技术等方式进一步优化性能。原创 2025-11-06 13:30:20 · 7 阅读 · 0 评论 -
19、并行时间步进算法:波形松弛与流水线迭代解析
本文深入解析了两种重要的并行时间步进算法:波形松弛与流水线迭代。波形松弛基于ODE形式,通过多重网格加速显著提升收敛速度,适用于可转化为ODE系统的问题;流水线迭代则基于直接PDE形式,通过重叠时间步迭代实现高效并行,适合松弛收敛慢的大规模问题。文章详细介绍了算法原理、并行实现方式、优化策略,并结合热传导和流体力学案例展示了实际应用效果,最后给出了算法选择建议与未来展望。原创 2025-11-05 14:28:32 · 6 阅读 · 0 评论 -
18、并行时间步长算法:解决抛物型偏微分方程的新途径
本文介绍了求解抛物型偏微分方程的并行时间步长算法,突破传统仅在空间域并行的限制,提出利用时间维度并行性的新途径。重点阐述了波形松弛法、窗口迭代和流水线迭代三种方法的原理与流程,并对比其优缺点及适用场景。通过将时间域划分为窗口或构建连续流水线,结合空间并行,有效降低通信开销,提升大规模并行计算效率。文章最后展望了算法优化、硬件适配和问题扩展等未来研究方向。原创 2025-11-04 10:54:39 · 6 阅读 · 0 评论 -
17、并行计算在水库模拟中的性能优化
本文探讨了并行计算在水库模拟中的性能优化策略,通过在KSR-1并行计算机上进行三个案例实验,比较了自动并行化、半自动化指定并行位置以及进一步优化tile大小对计算效率的影响。结果表明,合理控制并行粒度和显式设置tile大小可显著提升执行效率和可扩展性,接近理想加速比。研究强调了针对复杂算法采用精细化并行策略的重要性,为高性能科学计算提供了实践指导。原创 2025-11-03 12:16:57 · 6 阅读 · 0 评论 -
16、多孔介质流动模拟的离散化、并行化及数值实验
本文探讨了多孔介质流动模拟中的离散化与并行化策略,采用有限差分法对控制方程进行空间和时间离散,并利用线红黑排序实现高斯-赛德尔和SOR松弛方法的并行化。通过在iPSC/860超立方体上的数值实验,比较了三种不同通信实现方式的性能:基础通信、高效收敛验证(log₂P通信步)以及通信与计算重叠的异步通信方案。结果表明,随着处理器数量增加,优化通信显著提升性能,尤其在情况3中表现最佳。此外,文章还讨论了KSR-1上的半自动化并行化潜力,并分析了加速比与效率等性能指标,提出了减少通信开销、重叠通信与计算、负载均衡等原创 2025-11-02 10:13:20 · 7 阅读 · 0 评论 -
15、并行计算在泊松方程求解与多相流模拟中的应用
本文探讨了并行计算在泊松方程求解与多相流模拟中的关键应用。针对泊松方程,分析了雅可比和高斯-赛德尔迭代方法的并行实现,比较了不同域分解策略对通信效率的影响,并讨论了数据存储方式对性能的优化作用。在多相流模拟方面,以油藏黑油模型为例,研究了非线性偏微分方程组的数值求解过程及其并行化挑战,重点包括‘指进现象’的预测、变量耦合处理以及SS求解方法的应用。文章进一步对比了两类问题在算法复杂度、并行性、数据通信和收敛性方面的差异,提出了实际应用中处理器数量、分解策略与算法选择的权衡原则,并展望了算法改进、硬件发展与跨原创 2025-11-01 16:19:43 · 8 阅读 · 0 评论 -
14、并行计算中的消息交换与KSR - 1并行计算机编程
本文深入探讨了并行计算中的消息交换机制与KSR-1并行计算机的编程模型。首先分析了二维域分解下的消息交换算法及其性能差异,比较了使用强制消息类型与否在不同处理器网格配置下的通信开销。随后介绍了KSR-1的架构特点,包括其分布式物理内存与共享地址空间的设计、内存层次结构及访问延迟。重点阐述了KSR-1上的三种并行化方式:自动、半自动和手动并行化,详细说明了pthread机制、并行构造(如并行区域、并行部分、瓦片族)以及关键参数(如numthreads、teamid、private、tilesize和strat原创 2025-10-31 14:55:44 · 5 阅读 · 0 评论 -
13、三维域分解与强制消息类型带宽改进
本文深入分析了三维域分解中的三种主要方案——切片分解(D31)、列分解(D32)和块分解(D33),比较了它们在通信时间与通信/计算比方面的性能差异,指出在处理器数量较多时块分解具有最优的扩展性。同时探讨了强制消息类型在提升消息传递带宽方面的优势,特别是在一维、二维和三维拓扑结构中的应用策略。结合数值实验结果,展示了强制消息类型如何通过减少通信开销、利用双向通道来提高长消息传输效率。最后给出了在实际并行计算中根据问题规模、域形状、处理器布局和消息长度选择合适分解方案与通信机制的综合建议。原创 2025-10-30 14:14:26 · 9 阅读 · 0 评论 -
12、并行计算中的通信与域分解方法分析
本文深入分析了超立方体架构下iPSC/860系统的处理器间通信机制与二维域分解方法。重点探讨了正常与强制消息类型的通信差异、阻塞与非阻塞通信的效率优化,并对比了条带分解(D21)和补丁分解(D22)在不同计算规模下的通信开销与适用场景。研究表明,补丁分解在大规模计算中具有更低的通信/计算比,而条带分解在小规模场景下实现更简单。文章还提出了基于计算规模和处理器数量的方案选择决策流程及多项通信优化策略,为并行计算中的性能提升提供了理论依据与实践指导。原创 2025-10-29 12:56:17 · 9 阅读 · 0 评论 -
11、并行计算实现:Intel iPSC/860超立方体及处理器间通信
本文深入探讨了Intel iPSC/860超立方体架构在并行计算中的实现方法,重点分析了其处理器间通信机制与任务映射策略。通过二进制反射格雷码实现一维、二维和三维计算任务到超立方体节点的高效映射,保持通信邻近性以降低通信开销。文章还讨论了性能瓶颈及优化策略,并结合三维区域分解问题的实际案例,展示了并行计算的完整实现流程。最后总结了iPSC/860的优势与面临的挑战,展望了未来并行计算系统的发展方向。原创 2025-10-28 12:50:01 · 6 阅读 · 0 评论 -
10、并行共轭梯度算法及其预条件方法详解
本文详细介绍了并行共轭梯度算法及其多种预条件方法,包括截断级数和多项式预条件、不完全因子分解预条件以及区域分解预条件。文章阐述了各类方法的原理、算法步骤、优缺点及并行实现方式,并通过对比分析和实际应用案例展示了不同预条件方法对收敛速度和计算效率的影响。最后探讨了并行实现中的通信、负载均衡与收敛性问题,并展望了未来在高性能计算环境下的优化方向。原创 2025-10-27 09:29:05 · 5 阅读 · 0 评论 -
9、并行共轭梯度算法详解
本文详细介绍了并行共轭梯度算法,用于求解对称正定线性方程组 $Ax b$。通过将问题转化为最小化函数 $Q(x)$,结合共轭梯度法进行迭代求解,并重点阐述了算法中矩阵-向量乘积、内积和向量更新的并行化实现方法。文章讨论了数据分布策略、消息交换机制以及基于二进制扇入的内积计算优化,展示了如何在分布式内存系统中高效执行该算法,提升大规模科学计算的性能。原创 2025-10-26 15:55:02 · 3 阅读 · 0 评论 -
8、并行多重网格方法:原理、算法及优势
本文系统介绍了并行多重网格方法的原理、算法及优势,涵盖网格分割并行化、聚合、过滤算法和多网格并发松弛四种主要策略。详细分析了各类方法的操作步骤、并行实现机制及其在计算效率、通信成本和收敛速度方面的表现,并结合流程图与表格进行直观展示。文章还对比了不同方法的适用场景,探讨了其在未来技术融合、应用拓展和算法创新方面的发展趋势,为科学计算与工程领域的高效求解提供了全面的理论支持与实践指导。原创 2025-10-25 16:36:27 · 6 阅读 · 0 评论 -
7、并行算法在偏微分方程求解中的应用
本文探讨了并行算法在偏微分方程求解中的关键应用,重点介绍了并行交替方向隐式(ADI)算法和并行多重网格方法的原理与优化策略。通过将计算任务分配给多个处理器,并结合前向/反向消元、局部数据交换和多层级网格迭代,显著提升了大规模PDE问题的求解效率。文章还分析了算法的加速比、效率与可扩展性,并给出了在计算流体力学、电磁学和材料科学等领域的应用场景,最后提出了实现过程中的处理器分配、通信设计与负载平衡优化建议。原创 2025-10-24 10:51:21 · 6 阅读 · 0 评论 -
6、并行交替方向隐式(ADI)算法详解
本文详细介绍了并行交替方向隐式(ADI)算法在求解偏微分方程中的应用。内容涵盖ADI算法的原理、空间离散化、交替隐式处理步骤,以及在共享内存和分布式内存并行计算机上的实现方式。重点讨论了通过颜色分组实现并行更新、区域分解避免全局数据交换等关键技术,并总结了该算法在提升计算效率和适应不同并行架构方面的优势。原创 2025-10-23 11:03:31 · 5 阅读 · 0 评论 -
5、并行松弛算法:求解偏微分方程的高效途径
本文系统介绍了求解偏微分方程离散化后大型稀疏线性系统的并行松弛算法,涵盖雅可比、高斯-赛德尔、逐次超松弛(SOR)及对称SOR(SSOR)算法的原理与迭代形式。重点分析了各类算法的数据依赖特性及其在并行计算环境下的实现策略,特别是雅可比算法的天然并行性与高斯-赛德尔/SOR算法通过红黑排序实现的有效并行化方法。文章还讨论了二维与三维情况下的扩展应用、不同离散模板对排序策略的影响,并提供了详细的并行操作步骤、实际应用案例及参数选择建议,最后总结了各类算法的性能对比与未来发展方向,为科学计算中的高效PDE求解提原创 2025-10-22 09:28:01 · 7 阅读 · 0 评论 -
4、偏微分方程求解的并行算法
本文介绍了偏微分方程(PDEs)在物理和工程问题中的重要性,重点讨论了泊松方程和热传导方程的有限差分法离散化过程,并详细阐述了将偏微分方程转化为代数方程组的方法。针对大规模数值求解效率问题,文章系统总结了多种并行算法,包括并行松弛法、交替方向隐式(ADI)法、多重网格法和共轭梯度法,分析了它们的适用场景与特点。通过流程图和表格形式直观展示了离散化步骤与算法选择策略,旨在帮助读者理解并高效应用偏微分方程的并行求解技术。原创 2025-10-21 14:43:51 · 5 阅读 · 0 评论 -
3、并行算法性能评估全解析
本文深入解析了并行算法性能评估的核心指标,包括加速比、效率、阿姆达尔定律和古斯塔夫森模型,结合图像渲染、数据排序、网络数据分析和科学计算等实际应用案例,阐述了各指标的意义与相互关系。文章还探讨了性能评估中的挑战,如并行开销、数据划分不均等问题,并提出了相应的应对策略。最后展望了在异构计算、人工智能融合及实时评估等方向的未来发展趋势,为并行算法的设计与优化提供了系统性的参考框架。原创 2025-10-20 11:35:27 · 3 阅读 · 0 评论 -
2、并行计算:原理、架构与应用
本文介绍了并行计算的基本原理、主要架构及其应用。从自然界和工业中的并行现象出发,阐述了并行计算通过多处理器协同工作提升计算效率的核心思想。文章详细对比了共享内存与分布式内存并行计算机的结构特点,并分析了SIMD和MIMD两种执行控制模式的差异与适用场景。同时探讨了共享地址空间与分布式物理内存相结合的新型架构,如KSR-1,兼顾编程便捷性与系统可扩展性。随着技术进步,并行计算在大规模科学工程问题中展现出广阔前景。原创 2025-10-19 12:38:03 · 5 阅读 · 0 评论 -
1、并行计算:原理、算法与应用探索
本文系统探讨了并行计算的原理、算法与应用,涵盖其发展背景与意义,分析了当前面临的挑战。文章详细介绍了并行计算机的分类方式,包括内存类型、指令执行方式和地址空间,并对比了各类特点。同时,阐述了加速比、效率、Amdahl定律和Gustafson模型等核心性能评估指标。针对偏微分方程求解,介绍了有限差分法、并行松弛算法、ADI算法、多重网格方法和共轭梯度法等多种并行算法,并通过流程图示例说明其执行过程。此外,还讨论了在特定硬件上的实现策略、不同并行化方式的优劣、典型应用领域以及未来发展方向,如性能评估深化、编程语原创 2025-10-18 14:10:16 · 6 阅读 · 0 评论
分享