53. Maximum Subarray

https://leetcode.com/problems/maximum-subarray/

题目大意:找出一个int型数组中连续的子串,使得在所有子串中该子串之和最大,求出和。例如:数组为[−2,1,−3,4,−1,2,1,−5,4],求得的子串为:[4,−1,2,1],得到的最大和为:6。

解题思路:动态规划。从头到尾扫描该数组,对于每一个元素,求出到当前元素为止能到的子串的最大和,那么会得到n个这样的和,这些和中最大的那一个就是所求的最大和。这里会有种贪心算法的感觉:如果前i-1个元素中的最大和我已经得到了,那么求前i个元素的最大和我只需要参考第i和元素和之前的最大和就可以了。

具体做法:实际上我们可以进行算法优化,没有必要申请那么大的空间,只需要用一个int型变量存储上一个最大和,每次都进行更新就可以了。

代码如下:

 1 class Solution {
 2 public:
 3     int maxSubArray(vector<int>& nums) {
 4         if(nums.size() == 0) return 0;
 5         int cur = nums[0];
 6         int result = cur;
 7         for(int i = 1; i < nums.size(); i++)
 8         {
 9             cur = max(cur + nums[i], nums[i]);
10             result = max(cur, result);
11         }
12         return result;
13     }
14 };

 

转载于:https://www.cnblogs.com/jingyuewutong/p/5583295.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值