目录
玉米大炮
A-玉米大炮_2022河南萌新联赛第(三)场:河南大学 (nowcoder.com)
思路:
我们发现如果花x的时间可以打败僵尸博士,那么花比x更多的时间肯定也可以打败僵尸博士,所以答案具有单调性,可以用二分求解。
代码:
#define _CRT_SECURE_NO_WARNINGS
#include<bits/stdc++.h>
#include<algorithm>
#define int long long
#define pb push_back
#define TEST int T; cin >> T; while (T--)
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define lowbit(x) x&(-x)
#define pll pair<int,int>
const int N = 1e6 + 30;
const int M = 1e3 + 10;
const int inf = 512785182741247112;
const int mod = 1e9 + 7;
using namespace std;
int n, m;
int a[N], b[N];
bool check(int x) {
int res = 0;
for (int i = 1; i <= n; i++) {
int cnt = x / b[i] + 1;
res += cnt * a[i];
if (res >= m) return true;
}
return res >= m;
}
void solve()
{
cin >> n >> m;
int s = 0;
for (int i = 1; i <= n; i++) cin >> a[i] >> b[i], s += a[i];
if (s >= m) {
cout << 0 << '\n';
return;
}
int l = 0, r = 1e18, ans;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) ans = mid, r = mid - 1;
else l = mid + 1;
}
cout << ans << '\n';
}
signed main() {
ios;
solve();
return 0;
}
逆序对计数
B-逆序对计数_2022河南萌新联赛第(三)场:河南大学 (nowcoder.com)
思路:
因为n最大为6000,所以可以用n^2的时间复杂度求解,我们可以定义一个二维数组a[i][j],代表在i到j的区间内有多少对逆序对,因为每次询问互不影响,所以每次询问可以O(1)求解,区间数组可以动态规划求解。
代码:
#define _CRT_SECURE_NO_WARNINGS
#include<bits/stdc++.h>
#include<algorithm>
#define int long long
#define pb push_back
#define TEST int T; cin >> T; while (T--)
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define lowbit(x) x&(-x)
#define pll pair<int,int>
const int N = 1e6 + 30;
const int M = 1e3 + 10;
const int inf = 512785182741247112;
const int mod = 1e9 + 7;
using namespace std;
int lr[6001][6001];
int n, a[N];
void solve()
{
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
int res = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j < i; j++) lr[j][i] = lr[j][i - 1];
int k = 0;
for (int j = i-1;j >=1; j--) {
if (a[j] > a[i]) k++,res++;
lr[j][i] += k;
}
}
int q;
cin >> q;
while (q--) {
int l, r;
cin >> l >> r;
int cnt = lr[l][r];//这个区间的逆序对
int tot = ( (r - l + 1) * (r - l) )/ 2;
cout << res + ((tot - cnt)-cnt) << '\n';
}
}
signed main() {
ios;
solve();
return 0;
}
旅行
I-旅行_2022河南萌新联赛第(三)场:河南大学 (nowcoder.com)
思路:
题目在普通最短路的基础上加上了附加条件,导致经过的城市越多会导致检测的次数变多,所以我们可以发现一下规律,发现我们最优求解必定是检测后,经过一次不检测再检测,所以我们在建边时只需要将检测过的城市与未检测的城市相连即可,我们需要扩充dis数组为n的两倍,最后走一遍迪杰斯特拉。
代码:
#define _CRT_SECURE_NO_WARNINGS
#include<bits/stdc++.h>
#include<algorithm>
#define int long long
#define pb push_back
#define TEST int T; cin >> T; while (T--)
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define lowbit(x) x&(-x)
#define pll pair<int,int>
const int N = 1e6 + 30;
const int M = 1e3 + 10;
const int inf = 512785182741247112;
const int mod = 1e9 + 7;
using namespace std;
int n, m, x, head[N], cnt;
struct node
{
int u, v, w;
}e[N];
void add(int u, int v, int w) {
e[++cnt] = { v,head[u],w };
head[u] = cnt;
}
void solve()
{
cin >> n >> m >> x;
for (int i = 1; i <= m; i++) {
int u, v, w; cin >> u >> v >> w;//将缴费和未缴费的建边,未缴费的边为u,缴费的边为u+n
add(u, v + n, w + x);
add(u + n, v, w);
add(v, u + n, w + x);
add(v + n, u, w);
}
vector<int>dis(2 * n + 1, inf);
dis[1] = 0;
priority_queue<pll>q;
q.emplace(0, 1);
while (q.size()) {
auto it = q.top(); q.pop();
int x = it.second;
for (int i = head[x]; i; i = e[i].v) {
int now = e[i].u;
if (dis[now] > dis[x] + e[i].w) {
dis[now] = dis[x] + e[i].w;
q.emplace(-dis[now], now);
}
}
}
cout << min(dis[n], dis[2 * n]) << '\n';
}
signed main() {
ios;
solve();
return 0;
}
神奇数字
J-神奇数字_2022河南萌新联赛第(三)场:河南大学 (nowcoder.com)
思路:
有且仅当三个数相同时才有无穷的答案,否则答案只存在1到三个数中的最大值之间,但是一个循环会超时,看了题解发现这个是个数学问题,答案就是三个数任意两数之间的差值的最大公约数的所有因子。
代码:
#define _CRT_SECURE_NO_WARNINGS
#include<bits/stdc++.h>
#include<algorithm>
#define int long long
#define pb push_back
#define TEST int T; cin >> T; while (T--)
#define ios ios::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr)
#define lowbit(x) x&(-x)
#define pll pair<int,int>
const int N = 1e6 + 30;
const int M = 1e3 + 10;
const int inf = 512785182741247112;
const int mod = 1e9 + 7;
using namespace std;
int qgcd(int a, int b) {
int res;
while (b > 0) {
res = a % b;
a = b;
b = res;
}
return a;
}
void solve()
{
int a, b, c;
cin >> a >> b >> c;
int mx = max({ a,b,c });
if (a == b && b == c) {
cout << "-1\n";
return;
}
int A = abs(a - b), B = abs(b - c), C = abs(a - c);
int ans = qgcd(A, B);
ans = qgcd(ans, C);
vector<int>res;
for (int i = 1; i * i <= ans; i++) {
if (ans % i == 0) {
res.push_back(i);
if (ans / i != i) {
res.push_back(ans / i);
}
}
}
sort(res.begin(), res.end());
for (auto x : res) cout << x << ' ';
cout << '\n';
}
signed main() {
ios; TEST
solve();
return 0;
}