要将一条直径至少为 1 个单位的长管道水平送入地形复杂的岩洞中,究竟是否可能?下面的两幅图分别给出了岩洞的剖面图,深蓝色的折线勾勒出岩洞顶部和底部的轮廓。图 1 是有可能的,绿色部分显示直径为 1 的管道可以送入。图 2 就不可能,除非把顶部或底部的突出部分削掉 1 个单位的高度。 |
本题就请你编写程序,判断给定的岩洞中是否可以施工。
输入格式:
输入在第一行给出一个不超过 100 的正整数 N,即横向采样的点数。随后两行数据,从左到右顺次给出采样点的纵坐标:第 1 行是岩洞顶部的采样点,第 2 行是岩洞底部的采样点。这里假设坐标原点在左下角,每个纵坐标为不超过 1000 的非负整数。同行数字间以空格分隔。
题目保证输入数据是合理的,即岩洞底部的轮廓线不会与顶部轮廓线交叉。
输出格式:
如果可以直接施工,则在一行中输出 Yes
和可以送入的管道的最大直径;如果不行,则输出 No
和至少需要削掉的高度。答案和数字间以 1 个空格分隔。
输入样例 1:
11
7 6 5 5 6 5 4 5 5 4 4
3 2 2 2 2 3 3 2 1 2 3
输出样例 1:
Yes 1
输入样例 2:
11
7 6 5 5 6 5 4 5 5 4 4
3 2 2 2 3 4 3 2 1 2 3
输出样例 2:
No 1
考察 : 数据信息处理,很不错的基础题 |
注意 : 无 |
思路 : 宽 = 顶部 - 底部 |
C/C++
#include<bits/stdc++.h>
using namespace std;
int main()
{
int N,top=1001,bottom=0,num;
cin >> N;
for(int z=0;z<N;z++) {
cin >> num;
top=min(top,num);
}
for(int z=0;z<N;z++) {
cin >> num;
bottom=max(bottom,num);
}
int result = top-bottom;
if(result>0) cout << "Yes " << top-bottom << endl;
else cout << "No " << -result+1 << endl;
return 0;
}