要理解本文内容,需对NIFI有一定的了解,如果您是新手,想学习NIFI,或者想在数仓架构中引入NIFI,欢迎加我微信bigdata_work,我这有一整套使用NIFI的实时数仓落地方案。
在建设实时数仓的过程中,利用缓存机制来提升实时指标的实时性,是一种常用的方法。NIFI提供了专门的缓存组件来应对这一需求。
了解缓存组件
NIFI中的缓存组件是成对出现的,即有负责将数据放入缓存的组件,有负责将数据从缓存取出的组件。这两个组件如下:
首先将PutDistributedMapCache组件添加到画布中,看一下有什么属性:
这里要理解的一个属性是Distributed Cache Service(缓存服务)。缓存服务是要单独创建的一个Controller Service,NIFI支持多种第三方缓存服务:
支持的缓存服务大概有8种, 本示例中使用DistributedMapCacheClientService.
从DistributedMapCacheClientService名字中可以看出,这是一个Client,那么需要有一个Server。也就是说,上图8种缓存服务Client,都要连接上对应的Server地址,比如Redis缓存Client ,需要有Redis Server。
创建DistributedMapCacheServer
启动DistributedMapCacheServer
连接DistributedMapCacheServer
启动DistributedMapCacheClientService
回到ETL开发界面,继续开发ETL任务。
将数据放入缓存
PutDistributedMapCache 将数据放入缓存服务DistributedMapCacheClientService的机制是:将Cache Entry Identifier属性值作为map的key,将当前FlowFile内容作为map的value,放入到缓存中。
将数据从缓存取出
FetchDistributedMapCache 将数据从缓存服务DistributedMapCacheClientService取出的机制是:将Cache Entry Identifier属性值作为map的key,从缓存服务中将对应的value值查询出来,作为FlowFile的内容。
将数据从缓存删除
NIFI并没有提供相应的删除缓存组件,可以使用ExecuteGroovyScript组件,自定义代码,从缓存删除数据。
用视频演示上述操作(需要本系列全套视频的朋友加微信bigdata_work)。