HDU - 3486 Interviewe (rmq+枚举)

题目思路:
一开始看感觉像是要二分 但是单调性不是很确定 看到有大佬给了不满足单调性的数据 看了题解才晓得原来直接枚举就能做
先做前缀和来判断是否一定有解
然后找区间个数的边界
右边界很简单 就是n
拿k+1(题目要求严格大于k)除数组里面的最大的数 得到的值就是最小的区间个数 即左边界了
然后用rmq查询区间最大值再相加比较即可
中间有些小细节要注意
不然会报 Runtime Error(INTEGER_DIVIDE_BY_ZERO)

ac代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <string.h>
#include <vector>
#include <stack>
#include <queue>
#include <map>
#include <utility>
#define pi 3.1415926535898
#define ll long long
#define lson rt<<1
#define rson rt<<1|1
#define eps 1e-6
#define ms(a,b) memset(a,b,sizeof(a))
#define legal(a,b) a&b
#define print1 printf("111\n")
using namespace std;
const int maxn = 2e5+50;
const int inf = 0x1f1f1f1f;
const int mod = 2333;

int n,k,a[maxn],dp[maxn][25],sum[maxn];

void rmq()
{
    for(int i=1;i<=n;i++)
        dp[i][0]=a[i];
    for(int j=1;(1<<j)<=n;j++)
        for(int i=1;i+(1<<j)-1<=n;i++)
            dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}

int query(int l,int r)
{
    int i=0;
    while(l+(1<<i)-1<r)
    {
        i++;
    }
    i--;
    return max(dp[l][i],dp[r-(1<<i)+1][i]);
}
int main()
{
    while(~scanf("%d%d",&n,&k))
    {
        if(n==-1&&k==-1) break;
        sum[0]=0;
        int maxx=1;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
            maxx=max(maxx,a[i]);
        }
        if(sum[n]<=k)
        {
            printf("-1\n");
            continue;
        }
        rmq();
        int l=(k+1)/maxx;
        if(l==0) l=1;//这里一定要注意 没有这一步的话 l可能会是0 在下面tem=n/i;那里就会出问题然后报之前提到的那个错误
        int r=n;
        int sum111,ans=n;//这里如果写ans=-1的话会wa 当答案应该为n的时候会输出-1 令人头疼 这个地方让我wa到自闭
        for(int i=l;i<=r;i++)
        {
            sum111=0;
            int tem=n/i;
            for(int j=0;j<i;j++)
            {
                sum111+=query(1+j*tem,tem+tem*j);
                if(sum111>k)break;
            }
            if(sum111>k)
            {
                ans=i;
                break;
            }
        }
        printf("%d\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值