LeetCode 494.目标和

博客介绍了如何运用动态规划解决寻找数组中元素加减组合达到特定目标和的问题。通过分析数组正负数的分布,将问题转化为01背包问题,并推导出转移方程。文章强调了在处理过程中需要注意的细节,如数组长度的处理和目标和的奇偶性判断。
摘要由CSDN通过智能技术生成

这个问题卡了我很久,记录一下解题思路

在这里放一下原题

 

 

分析:

数组中,每个数字都有两种状态,+或者是-,因此,我们可以将数组分为正数组和负数组两个部分,即转换为01背包为题

设数组的和为sum,正数组的部分为sumA,负数组的部分为sumB

                sumA + sumB = sum (1)

                sumA - sumB = target (2)

根据(1)(2)两个式子,我们可以得出

                sumA =(sum + target)/2

即将问题转换为:

背包的容量为sumA,也有i个重量为nums[i],问:有多少种方式能够装满这个背包

 注意:

根据提示中的说明,每个数字都是正数,因此sumA,sumB,sum都是整数。

并且sum+target必须是偶数,否则无解

推导转移方程:

dp[i][j]的意义是,在前i个数字中,凑出和为j的组合有多少种

对于第i个数字,我们有两种选择:

  1. 选择将第i个数字放入正数堆,此时,数字还剩i - 1个,背包的容量需要减去nums[i]。递推式为dp[i][j] = dp[i - 1][j - nums[i]];
  2. 选择放弃第i个数字,直接来到第i - 1个数字,背包的容量不变。递推式为dp[i][j] = dp[i - 1][j];
  3. 当背包的容量小于第i个数字时,即j < nums[i],无法将第i个数字放入背包,dp[i][j] = dp[i - 1][j]

初始化dp[][]:

dp[0][0] 在前0个数字中,凑出和为0的组合就一种方法(不放),即dp[0][0] = 1

class Solution {
    public int findTargetSumWays(int[] nums, int target){
        int sum = 0;
        for (int num : nums) {
            sum += num;
        }
        int T = (target + sum) / 2;
        if (T < 0) T = -T;
        //如果target + sum为奇数,则无解
        if ((target + sum) % 2 != 0) return 0;
        int[][] dp = new int[nums.length + 1][T + 1];
        dp[0][0] = 1;// 这里 i = 0; 
        for (int i = 1; i <= nums.length; i++) {
            for (int j = 0; j <= T; j++) {
                if (j >= nums[i - 1])
                    dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i - 1]];
                else
                    dp[i][j] = dp[i - 1][j];
            }
        }
        return dp[nums.length][T];
    }
}

 解析:

1.这里为什么要使用nums.length+1 而不是nums.length

 解析:在初始化的时候我们讲到,dp[0][0]为背包容量为零是放入前0个数字,也就是说,前0个数字我们也要将其作为一种状态,所以数组中的数字我们要将其从1开始计算,即1作为数组中第一个数字的下标,而不是0。所以这里要使用nums.length+1

2.为什么这两个地方要使用nums[i-1],平时不都是使用nums[i]吗?

 

 解析:上边的问题1中我们得出,下表为1的时候作为数组中第一个数字的下标,并且for循环中的i是从1开始遍历的,所以为了让nums[]从第一个元素开始遍历,我们采用nums[i-1]来进行对齐操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值