这个问题卡了我很久,记录一下解题思路
在这里放一下原题
分析:
数组中,每个数字都有两种状态,+或者是-,因此,我们可以将数组分为正数组和负数组两个部分,即转换为01背包为题
设数组的和为sum,正数组的部分为sumA,负数组的部分为sumB
sumA + sumB = sum (1)
sumA - sumB = target (2)
根据(1)(2)两个式子,我们可以得出
sumA =(sum + target)/2
即将问题转换为:
背包的容量为sumA,也有i个重量为nums[i],问:有多少种方式能够装满这个背包
注意:
根据提示中的说明,每个数字都是正数,因此sumA,sumB,sum都是整数。
并且sum+target必须是偶数,否则无解
推导转移方程:
dp[i][j]的意义是,在前i个数字中,凑出和为j的组合有多少种
对于第i个数字,我们有两种选择:
- 选择将第i个数字放入正数堆,此时,数字还剩i - 1个,背包的容量需要减去nums[i]。递推式为dp[i][j] = dp[i - 1][j - nums[i]];
- 选择放弃第i个数字,直接来到第i - 1个数字,背包的容量不变。递推式为dp[i][j] = dp[i - 1][j];
- 当背包的容量小于第i个数字时,即j < nums[i],无法将第i个数字放入背包,dp[i][j] = dp[i - 1][j]
初始化dp[][]:
dp[0][0] 在前0个数字中,凑出和为0的组合就一种方法(不放),即dp[0][0] = 1
class Solution {
public int findTargetSumWays(int[] nums, int target){
int sum = 0;
for (int num : nums) {
sum += num;
}
int T = (target + sum) / 2;
if (T < 0) T = -T;
//如果target + sum为奇数,则无解
if ((target + sum) % 2 != 0) return 0;
int[][] dp = new int[nums.length + 1][T + 1];
dp[0][0] = 1;// 这里 i = 0;
for (int i = 1; i <= nums.length; i++) {
for (int j = 0; j <= T; j++) {
if (j >= nums[i - 1])
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - nums[i - 1]];
else
dp[i][j] = dp[i - 1][j];
}
}
return dp[nums.length][T];
}
}
解析:
1.这里为什么要使用nums.length+1 而不是nums.length
解析:在初始化的时候我们讲到,dp[0][0]为背包容量为零是放入前0个数字,也就是说,前0个数字我们也要将其作为一种状态,所以数组中的数字我们要将其从1开始计算,即1作为数组中第一个数字的下标,而不是0。所以这里要使用nums.length+1
2.为什么这两个地方要使用nums[i-1],平时不都是使用nums[i]吗?
解析:上边的问题1中我们得出,下表为1的时候作为数组中第一个数字的下标,并且for循环中的i是从1开始遍历的,所以为了让nums[]从第一个元素开始遍历,我们采用nums[i-1]来进行对齐操作