多个double类型的数直接相加的时候,可能存在精度误差.( 由于计算机算法以及硬件环境决定只能识别 0 1。计算机默认的计算结果在都在一个指定精度范围之内,想往深的了解,可以学习数值分析等)
在金融方面是绝对不允许的,好在java开发者有这个先见之明。
java.math.*里面提供了BigDecimal类(提供高精度计算的方法)
这个时候就要采用BigDecimal函数进行运算
第一步、建立String类型的数据
第二步、创建BigDecimal对象BigDecimal(Double.toString(double))
以下两种不推荐:
BigDecimal(double)或者BigDecimal(Double.valueOf(double)))
建议: 涉及到精度问题的时候,整个计算过程都是用String类型或者BigDecimal类对象。最后结果根据需求 在转过来。
另外该文章提供了一个计算辅助类Java Double相加出现的怪事
急需的话,直接学习、创建该工具类,就可以完成项目了。以下是 加法算法的几个实现的方法。
new BigDecimal(Double.toString(double)).add(new BigDecimal(Double.toString(double));
/**
* @param b1
* BigDecimal
* @param v2
* double
* @return BigDecimal
* */
public BigDecimal add(BigDecimal b1, double v2) {
// BigDecimal b1=new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.add(b2);
}
/**
* @param b1
* double
* @param v2
* double
* @return BigDecimal
* */
public BigDecimal add(double v1, double v2) {
BigDecimal b1=new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.add(b2);
}
/**
* @param b1
* double
* @param v2
* double
* @return double
* */
public double add(double v1, double v2) {
BigDecimal b1=new BigDecimal(Double.toString(v1));
BigDecimal b2 = new BigDecimal(Double.toString(v2));
return b1.add(b2).doubleValue();
}
二、double 三种加法比较
+,strictfp,BigDecimel
Strictfp —— Java 关键字。
可应用于类、接口或方法。
使用 strictfp 关键字声明一个方法时,该方法中所有的float和double表达式都严格遵守FP-strict的限制,符合IEEE-754规范。
严格约束意味着所有表达式的结果都必须是 IEEE 754 算法对操作数预期的结果,以单精度和双精度格式表示。
public class MathDemo {
/**
* @param args
*/
public static void main(String[] args) {
System.err.println("普通 "+ addNormal(12353.21,21334.24,154435.03));
System.err.println("strictfp "+addDouble(12353.21,21334.24,154435.03));
System.err.println("BigDEcimel: "+add(12353.21,21334.24,154435.03));
}
public static double addNormal(double... v1) {
double res = 0;
for (int i = 0; i < v1.length; i++) {
res += v1[i];
}
return res;
}
public static strictfp double addDouble(double... v) {
double res = 0;
for (int i = 0; i < v.length; i++) {
res += v[i];
}
return res;
}
/**
* @param b1
* double
* @param v2
* double
* @return double
*/
public static double add(double... v) {
BigDecimal b = new BigDecimal(Double.toString(v[0]));
for (int i = 1; i < v.length; i++) {
BigDecimal b2 = new BigDecimal(Double.toString(v[i]));
b=b.add(b2);
}
return b.doubleValue();
}
}
输入
12353.21,21334.24,154435.03三个类型的数据时候
结果:
普通 188122.47999999998
strictfp 188122.47999999998
BigDEcimel: 188122.48
输入
3.21, 4.24,5.03
结果
普通 12.48
strictfp 12.48
BigDEcimel: 12.48
输入:
12353.21,21334.24
结果:
普通 33687.45
strictfp 33687.45
BigDEcimel: 33687.45
结论是:
BigDecimal的算法精度比较好。 其余两种方法 都存在缺点。至于strictfp 这个关键字 是去平台化影响。比如32为机器和64位机器结果都一样。 对于精度计算结果影响不大。
附录:.
//使用double类型创建BigDecimal
public BigDecimal(double val) {
if (Double.isInfinite(val) || Double.isNaN(val))
throw new NumberFormatException("Infinite or NaN");
// Translate the double into sign, exponent and significand, according
// to the formulae in JLS, Section 20.10.22.
long valBits = Double.doubleToLongBits(val);
int sign = ((valBits >> 63)==0 ? 1 : -1);
int exponent = (int) ((valBits >> 52) & 0x7ffL);
long significand = (exponent==0 ? (valBits & ((1L<<52) - 1)) << 1
: (valBits & ((1L<<52) - 1)) | (1L<<52));
exponent -= 1075;
// At this point, val == sign * significand * 2**exponent.
/*
* Special case zero to supress nonterminating normalization
* and bogus scale calculation.
*/
if (significand == 0) {
intVal = BigInteger.ZERO;
intCompact = 0;
precision = 1;
return;
}
// Normalize
while((significand & 1) == 0) { // i.e., significand is even
significand >>= 1;
exponent++;
}
// Calculate intVal and scale
long s = sign * significand;
BigInteger b;
if (exponent < 0) {
b = BigInteger.valueOf(5).pow(-exponent).multiply(s);
scale = -exponent;
} else if (exponent > 0) {
b = BigInteger.valueOf(2).pow(exponent).multiply(s);
} else {
b = BigInteger.valueOf(s);
}
intCompact = compactValFor(b);
intVal = (intCompact != INFLATED) ? null : b;
}