久闻人工智能学科在科学界存在各种争论,但一旦从机器翻译技术身临其境,仍然深感震惊。 |
机器翻译作为起步最早、应用范围最广、投入人力最多的人工智能技术,经历了几十年的各种探索,今天终于已经达成了这样一种共识:由于自然语言是一个随机开放的信息系统,无论采用什么自动翻译方法,其翻译结果都只可能具有概率意义。 |
令人震惊的并不是这个结论本身,而是机器翻译界正视人类自然语言常识性公理对机器翻译技术的根本制约意义,竟然花了将近半个世纪! |
这一事实不得不令人思考,人工智能学科到底出了什么问题?在哪里出了问题?有没有解决问题的办法?笔者从方法论角度,对人工智能学科中的以上问题提出个人看法。 |
一、人工智能的定义和争论 |
人工智能学界一般认为:人工智能就是用电脑模拟人脑的智能行为。包括感知、学习、推理、对策、决策、预测、直觉、联想。坚持计算机有人类智能的人认为:如果计算机系统能够模拟人类的智力活动,完成人用智能才能完成的任务,就应该承认计算机有智能。坚持计算机不可能有人类智能的人认为:人类智能是一个发生、发展的过程。人类在解决问题时,存在非智力因素与智力因素的相互作用。计算机能够模拟的人类智能极其有限。 |
问题: |
电脑的全部计算行为仅仅是0、1选择。当人脑将人类的各种信息处理方法成功地转换为0、1选择之后,0、1选择才具有了功能意义。电脑对人脑功能的模拟能力,实际上是人脑将自身的信息处理方法转换为0、1选择的能力。 |
我们知道,当乐器发出悦耳的音响时,并不是乐器在歌唱。当鹦鹉说“你好”时,并不是鹦鹉懂礼貌。从方法论上讲,根据电脑能够在功能意义上模拟人脑,就认为电脑具有智能,是一种拟人化移情性思维。用这种方法推销产品可以,但用这种方法定义“人工智能”概念,显然违背科学定义的基本常识。 |
二、人工智能研究的目的与方法 |
目的: |
1、通过计算机技术模拟人脑智能,替代人类解决生产、生活中的具体问题。 |
2、通过计算机技术延伸人类智力,提高人类解决生产、生活中的具体问题的能力。 |
3、通过计算机技术研究和推动人类智力发展。 |
方法: |
1、将对象信息转换为计算机内码(数字化信息)。 |
2、建立相关知识库和知识应用模型(包括各种算法和知识推理的逻辑运算方法)。 |
3、通过计算机程序语言实现对象信息的加工处理。 |
问题: |
无论是替代、延伸,还是研究和推动人脑智能,我们必须首先明确:人工智能是对机器智能的发现科学?还是一种实用工程技术?从以上通行的定义看,人工智能只是一种实用工程技术。既然是一种实用工程技术,就必须建立人工智能技术开发的规范性方法。借鉴工程技术开发的一般原理,人工智能应用技术研究,至少应包括系统方案设计方法论和可行性分析方法研究。其具体工作至少应该包括: |
1、分析处理对象与工具的关系:在问题解决过程中,哪些知识需要并且可能数字化?规则化?模型化?逻辑运算化?何种计算机程序语言可以实现所选择的信息处理方案? |
2、人工智能与人脑智能的效率比较:电脑和人脑各具优势是一个基本常识。虽然计算机对可建立信息处理规则的数字化信息的计算、搜索、模式识别既快又准,但由于人类知识普遍具有或然性和可变性,从应用价值角度分析,“全自动的并不就是最好的”。因此,必须根据相关公认知识系统的或然性、可变性等参数,与人脑的处理水平进行价值比较。比较的内容包括精确性(可靠性)、灵敏性、周延性。 |
3、选择人工智能系统的人机互助方案:凡是不可能建立周延的计算机信息处理规则的信息系统,信息处理过程中的人工参与将不可避免。因此,在运用人工智能技术的实用系统开发中,电脑能力和人脑能力如何优化组合是一个关键性问题。人机能力组合技术的科学性、功能完整性、普遍适用性水平,决定了一个人工智能系统的实用价值。 |
4、人工智能系统的成本效益分析:任何实用工程技术,必须考虑其开发成本和使用价值之比。因此,对人工智能技术的价值(效率)评价、人工智能系统的人机互助方案选择,必须进行开发成本和市场效益分析。 |
到目前为止,人工智能作为一种技术,一直没有在2、3、4领域建立规范、系统的方法。 |
三、关于人工智能技术发展的几点建议 |
1、跳出对电脑能力的移情性思维 |
只有彻底摆脱对电脑能力的移情性思维,才可能将人工智能研究和发展完全纳入现代科学轨道。因此,充分正视“电脑对人脑功能的模拟能力,实际上只是人脑将各种信息处理过程转换为0、1选择过程的能力”,是一个需要不断强调的基本常识。 |
2、脱掉人工智能的神秘外衣 |
如果各种人工智能方法均可归结为建立算法和模型,而建立算法和模型只是计算机信息处理的通用手段。那么,人工智能和非人工智能的计算机信息处理技术,从方法论上并不存在本质区别。 |
3、建立电脑模拟技术的方法论前提 |
在人脑思维过程中,每个人的大脑神经网络连接活动,具有受不同生命基因制约的个性化特征。换举话说,人脑思维过程中的大脑神经网络连接活动具有不可重复性。而符号化的思维活动(比如语言符号的语义约定)却具有可重复的普遍共性。因此,在大脑神经网络连接活动与符号化的思维活动之间,并不存在具有普遍意义的映射关系。换句话说,大脑神经网络连接活动与符号化的思维活动是两条永不相交的平行线。因此,如果要想模拟人类思维活动,应该模拟符号化思维活动,而不是模拟思维活动的生物过程。 |
4、摆脱知识崇拜 |
承认和重视人类知识的相对性,是现代科学精神的精髓。充分理解具有封闭性特征的公共知识系统在解决探索性问题时只具有辅助功能和参考价值,具有十分重要的意义。因为无论多么复杂的人工智能技术,其基本功能仍然是提供公共知识服务。 |
5、加强人机互助技术方法论研究 |
要提高人工智能技术的使用价值,应该从系统方案设计之初,就充分重视人机优势互补的方法论探讨,而不仅仅是将人机对话、人机互补当成一个不得已的补丁或遮羞布。实践证明,任何以自动化技术为中心的人机接口技术,其应用价值往往大打折扣。 |
6、加强人工智能工程技术可行性论证规范研究 |
只有加强人工智能工程技术开发的方法论研究,建立人工智能工程技术可行性论证规范,才能尽可能降低开发风险,保证人工智能工程性项目开发的顺利完成和市场前景。到目前为止,大多数人工智能技术开发的投入和产出都不成正比,更谈不上成为高新技术的支柱型产业。个人以为,如果不能妥善解决以上问题,这一状况还将继续。 |
四、实用技术发展趋势预测 |
如果对人工智能的上述分析是有道理的,那么,人工智能工程技术的发展趋势可能如下: |
1、从独立进行的过程仿真走向与相关技术进行组合的功能仿真 |
2、从机器替代走向机器参与 |
3、从机器思维走向机器辅助人脑思维 |
4、从机器学习走向机器帮助人学习 |
在机器翻译技术的发展过程中,几乎涉及到了人工智能技术发展中的所有上述问题。应该说,如果机器翻译界乃至人工智能界不做“鸟飞派”(在没有确立基本方法论的状态下急于进行实际应用课题的盲目探索),而是更广泛地吸收科学界的不同意见,投入更多的精力不断进行人工智能基本方法论的探讨,将不会经历如此漫长的艰苦探索。 |
机器翻译技术目前的处境,值得整个人工智能界思考。 |