【图文解说】BP神经网络与深度学习CNN的关系

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

BP神经网络是一个经典、有效的算法,即使时至今日,在传统的"小数据"领域仍有卓越的拟合效果。而BP神经网络的更大贡献是,它开启了后来的CNN\RNN等深度学习模型的大门。本文简单讲解BP神经网络是与深度学习CNN的关系。

一、BP神经网络网络是什么

BP神经网络模仿人的大脑,将输入层层前馈并激活,从而得到最终的输出,BP神经网络的拓扑结构如下:
BP神经网络模拓扑结构
BP更多用于数值拟合,这时最常用的是三层BP神经网络,三层的BP神经网络只要隐节点足够多就足以拟合任意曲线。
BP神经网络原理

二、BP神经网络用于图象识别问题

1.1.BP神经网络解决图象识别问题

由于BP神经网络可以拟合任意曲线,因此搭配softmax函数,进一步解决模式识别问题,包括图像的识别,例如“手写数字识别”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老饼讲解-BP神经网络

请老饼喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值