The 43 rd ACM Asia Nanjing Regional Contest

https://vj.ti12z.cn/b02428b1bbcf4609f7b121c06ef01b09?v=1564291265

A.

 

思路
当K为1时显然的和N的奇偶性有关,那么我们考虑一下K>1 K>1K>1的情况
对于先手的Adrien来说,他对任意的N颗石子,他都可以将这N颗石子分成两段相当数量的石子(从中间开始拿对于奇数拿一颗,对于偶数拿两颗),那么剩下的两段相当于是独立的两个相同的游戏了,如果后手拿其中一段,那么我先手就对另一段进行这样相同的拆分,那么能保证我先手总是有石子能拿,所以我先手必胜,也就是说当K>1 K>1K>1的时候先手必胜,K==1 K==1K==1的时候判断奇偶,N==0 N==0N==0的时候特判即可

 

#include <bits/stdc++.h>
using namespace std;

int n,k;
int main() {
    while (~scanf("%d%d", &n, &k)) {
        if (n == 0) {
            printf("Austin\n");
            return 0;
        }
        if (k == 1) {
            if (n % 2 == 0) {
                printf("Austin\n");
            } else {
                printf("Adrien\n");
            }
        } else {
            printf("Adrien\n");
        }
    }
}

G.

题解:

 

 I

最大流。根据题目所给的数据,从勇士向怪物连边,流量上限均为 1

源点连到每个勇士一条边,流量上限均为 1。源点连到另一个虚拟节点,流量上限为 k,该虚拟节点连向每个勇士,流量上限均为 1

每个怪物连向汇点,流量上限均为 1

求出最大流即为答案。

#include<bits/stdc++.h>
using namespace std;

int n,m,k;
const int maxn=1e5+7;
const int maxm=1e5+7;
const int inf=0x3f3f3f3f;
struct Dinic {
    struct Edge {
        int next, f, to;
    } e[maxm];
    int head[maxn], dep[maxn], tol, ans;
    int cur[maxn];
    int src, sink, n;

    void add(int u, int v, int f) {
        tol++;
        e[tol].to = v;
        e[tol].next = head[u];
        e[tol].f = f;
        head[u] = tol;
        tol++;
        e[tol].to = u;
        e[tol].next = head[v];
        e[tol].f = 0;
        head[v] = tol;
    }

    bool bfs() {
        queue<int> q;
        memset(dep, -1, sizeof(dep));
        q.push(src);
        dep[src] = 0;
        while (!q.empty()) {
            int now = q.front();
            q.pop();
            for (int i = head[now]; i; i = e[i].next) {
                if (dep[e[i].to] == -1 && e[i].f) {
                    dep[e[i].to] = dep[now] + 1;
                    if (e[i].to == sink)
                        return true;
                    q.push(e[i].to);
                }
            }
        }
        return false;
    }

    int dfs(int x, int maxx) {
        if (x == sink)
            return maxx;
        for (int &i = cur[x]; i; i = e[i].next) {
            if (dep[e[i].to] == dep[x] + 1 && e[i].f > 0) {
                int flow = dfs(e[i].to, min(maxx, e[i].f));
                if (flow) {
                    e[i].f -= flow;
                    e[i ^ 1].f += flow;
                    return flow;
                }
            }
        }
        return 0;
    }

    int dinic(int s, int t) {
        ans = 0;
        this->src = s;
        this->sink = t;
        while (bfs()) {
            for (int i = 0; i <= n; i++)
                cur[i] = head[i];
            while (int d = dfs(src, inf))
                ans += d;
        }
        return ans;
    }

    void init(int n) {
        this->n = n;
        memset(head, 0, sizeof(head));
        tol = 1;
    }
} G;

int main(){
    scanf("%d%d%d",&n,&m,&k);
    G.init(n+m+2);
    for (int i=1;i<=n;i++){
        int nn,x;
        scanf("%d",&nn);
        G.add(0,i,1);
        G.add(n+m+1,i,1);
        for (int j=1;j<=nn;j++){
            scanf("%d",&x);
            G.add(i,x+n,1);
        }
    }
    for (int i=1;i<=m;i++){
        G.add(i+n,n+m+2,1);
    }
    G.add(0,n+m+1,k);
    printf("%d\n",G.dinic(0,n+m+2));
}

  

转载于:https://www.cnblogs.com/Accpted/p/11279856.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值