司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
输入输出格式
输入格式:第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。
输出格式:仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
输入输出样例
输入样例#1:
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
输出样例#1:
6 题解 由于一行的状态与上两行转移而来,所以状态比POJcorn fields这题多一维dp[i][j][k]表示i行j状态i-1行k状态的个 数,然后预处理一下第1行和第二行就行了。其他的和POJ的做法差不多。#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n,m,st[1<<10],dp[102][1<<10][1<<10],cnt,map[1<<10],c[1<<10]; char a[110][13]; void dfs(int shu,int sum,int pos){ if(pos>=m){ st[++cnt]=shu; c[cnt]=sum; return ; } dfs(shu|(1<<pos),sum+1,pos+3); dfs(shu,sum,pos+1); } bool judge1(int x,int y){ return st[x]&map[y]; } int main() { //cout<<(1<<1)<<endl; scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++){ cin>>a[i][j]; if(a[i][j]=='H'){ map[i]+=(1<<(m-j)); } } dfs(0,0,0); for(int i=1;i<=cnt;i++){ if(judge1(i,1)); dp[1][i][0]=c[i]; } for(int i=1;i<=cnt;i++){ if(judge1(i,2)) continue; for(int j=1;j<=cnt;j++){ if(judge1(j,1)) continue; if(st[i]&st[j]) continue; dp[2][i][j]=c[i]+c[j]; } } for(int i=3;i<=n;i++){ for(int j=1;j<=cnt;j++){ if(judge1(j,i)) continue; for(int k=1;k<=cnt;k++){ if(judge1(k,i-1)) continue; for(int p=1;p<=cnt;p++){ if(judge1(p,i-2)) continue; if((st[j]&st[k])||(st[k]&st[p])||(st[j]&st[p])) continue; dp[i][j][k]=max(dp[i][j][k],dp[i-1][k][p]+c[j]); } } } } int ans=0; for(int i=1;i<=cnt;i++){ for(int j=1;j<=cnt;j++) ans=max(ans,dp[n][i][j]); } printf("%d\n",ans); return 0; }