机器学习
井盖上的青蛙
这个作者很懒,什么都没留下…
展开
-
Python搭建模糊控制系统(scikit-fuzzy模块)
在上学的时候最早接触的智能控制算法就是模糊控制系统了,开始是使用MATLAB来进行软件实现的。工作后由于公司的版权意识,而且MATLAB原版很贵┑( ̄Д  ̄)┍,这条路就作罢了。后来接触Python,发现功能很强大,但在百度搜索中文资料的时候,很少有关于Python的模糊控制实现,但在搜索模糊控制模块的时候发现了scikit-fuzzy模块,它可以实现模糊控制系统。安装包:pip ins...原创 2019-12-09 16:56:26 · 34508 阅读 · 76 评论 -
利用python和TensorFlow解决线性回归问题
本文示例的模块版本:python 3.6tensorflow 1.15(会有很多警告,但不妨碍运行。另2.0很坑,API都变了T-T)本文主要借鉴并综合了以下两个博客的内容(样本生成和流图构建训练),并在其基础上绘制了拟合后的直线和“训练次数-代价函数值”曲线,可更直观的观察训练效果:https://www.cnblogs.com/xianhan/p/9090426.htmlhtt...原创 2019-09-03 09:22:21 · 439 阅读 · 0 评论 -
利用python和TensorFlow解决逻辑回归问题
本文示例的模块版本:python 3.6tensorflow 1.15(会有很多警告,但不妨碍运行。另2.0很坑,API都变了T-T) 使用随机的方法成样两个样本集,使用逻辑回归的方法对两个样本集进行分类。步骤如下:步骤1. 建立数据源(样本库)——使用随机初始化的方式。由于需要进行逻辑分类,需要建立2个数据类,并合并在一起。如下: num_points=1000 # ...原创 2019-09-04 10:23:17 · 295 阅读 · 0 评论 -
利用python和TensorFlow将正则化应用在逻辑回归问题中
第一部分.正则化函数及其应用通常使用的正则化方法包含L1正则化和L2正则化,介绍如下: L1 正则化 L2 正则化 说明 直接在原来的损失函数基础上加上权重参数的绝对值和: 直接在原来的损失函数基础上加上权重参数的平方和: 函数 ...原创 2019-09-04 17:29:22 · 469 阅读 · 0 评论 -
利用python和TensorFlow构建神经网络解决二分类问题
本文示例的模块版本:python 3.6tensorflow 1.15(会有很多警告,但不妨碍运行。另2.0很坑,API都变了T-T)关于神经网络结构的软件设计和分类曲线的绘制,本文主要参考了以下文章:https://blog.csdn.net/lilong117194/article/details/79130032构建的具体步骤如下:步骤1. 建立数据源(样本库)——使用随...原创 2019-09-05 17:53:27 · 2549 阅读 · 0 评论 -
利用python和TensorFlow通过SVM解决线性二分类问题
本文示例的模块版本:python 3.6tensorflow 1.15(会有很多警告,但不妨碍运行。另2.0很坑,API都变了T-T)系统构建的具体步骤如下:步骤1.使用随机的方式建立样本库。在进行标签数据的设置分类时,注意分类需要分正负(值随意): num_points=200 # 样本数目 vectors_set=[] x1_PlotData=[] #...原创 2019-09-09 13:13:24 · 1095 阅读 · 0 评论